Division algebras in linear Gr-categories

被引:0
|
作者
Huang, Hua-Lin [1 ]
Van Oystaeyen, Fred [2 ]
Zhang, Yinhuo [3 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
[3] Univ Hasselt, Dept Math & Stat, B-3590 Diepenbeek, Belgium
关键词
division algebra; group cohomology; Gr-category;
D O I
10.36045/bbms/1420071858
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study division algebras in an arbitrary linear Gr-category, i.e., a category of finite-dimensional vector spaces graded by a group with associativity constraint given by a 3-cocycle. When the 3-cocycle is non-coboundary, this provides some interesting classes of nonassociative division algebras. In particular, when we work on Gr-categories over the field of real numbers, some quasi-associative version of the quaternions and octonions appear.
引用
收藏
页码:859 / 872
页数:14
相关论文
共 50 条
  • [21] Special forms of two symbols are division algebras
    Roberto Aravire
    Bill Jacob
    manuscripta mathematica, 2002, 108 : 139 - 162
  • [22] Division algebras of prime degree with infinite genus
    Sergey V. Tikhonov
    Proceedings of the Steklov Institute of Mathematics, 2016, 292 : 256 - 259
  • [23] SK1 of graded division algebras
    R. Hazrat
    A. R. Wadsworth
    Israel Journal of Mathematics, 2011, 183 : 117 - 163
  • [24] Decomposition of involutions on inertially split division algebras
    Morandi, PJ
    Sethuraman, BA
    MATHEMATISCHE ZEITSCHRIFT, 2000, 235 (01) : 195 - 212
  • [25] Supersoluble crossed product criterion for division algebras
    R. Ebrahimian
    D. Kiani
    M. Mahdavi-Hezavehi
    Israel Journal of Mathematics, 2005, 145 : 325 - 331
  • [26] Decomposition of involutions on inertially split division algebras
    P.J. Morandi
    B.A. Sethuraman
    Mathematische Zeitschrift, 2000, 235 : 195 - 212
  • [27] Galois subfields of inertially split division algebras
    Hanke, Timo
    JOURNAL OF ALGEBRA, 2011, 346 (01) : 147 - 151
  • [28] A note on topological divisors of zero and division algebras
    J. Carlos Marcos
    Ángel Rodríguez-Palacios
    M. Victoria Velasco
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2015, 109 : 93 - 100
  • [29] Division algebras and transitivity of group actions on buildings
    Zaremsky, Matthew C. B.
    ADVANCES IN GEOMETRY, 2015, 15 (02) : 133 - 142
  • [30] A note on topological divisors of zero and division algebras
    Carlos Marcos, J.
    Rodriguez-Palacios, Angel
    Victoria Velasco, M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2015, 109 (01) : 93 - 100