Antioxidant and Antimicrobial Potencies of Chemically-Profiled Essential Oil from Asteriscus graveolens against Clinically-Important Pathogenic Microbial Strains

被引:11
作者
Aljeldah, Mohammed M. [1 ]
机构
[1] Univ Hafr Al Batin, Coll Appl Med Sci, Dept Clin Lab Sci, Hafar Al Batin 31991, Saudi Arabia
关键词
medicinal plants; clinically important strains; pathogens; bioactive compounds; phytoconstituents; ANTIFUNGAL ACTIVITY; THYMOL;
D O I
10.3390/molecules27113539
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recently, the antimicrobial potential of essential oils extracted from plants has gained extensive research interest, primarily for the development of novel antimicrobial treatments to combat emerging microbial resistance. The current study aims at investigating the antimicrobial activity and chemical composition of essential oil derived from gold coin daisy, which is known as Asteriscus graveolens (EOAG). In this context, a gas chromatography-tandem mass spectrometry (GC-MS) analysis of EOAG was conducted to identify its phytoconstituents. The in vitro antioxidant capacity of EOAG was determined by the use of three tests, namely: 1,1-diphenyl-2-picrylhydrzyl (DPPH), ferric reducing activity power (FRAP), and total antioxidant capacity (TAC). The antimicrobial activity of EOAG against clinically important bacterial (Escherichia coli, K12; Staphylococcus aureus, ATCC 6633; Bacillus subtilis, DSM 6333; and Pseudomonas aeruginosa, CIP A22) and fungal (Candida albicans, ATCC 10231; Aspergillus niger, MTCC 282; Aspergillus flavus, MTCC 9606; and Fusarium oxysporum, MTCC 9913) strains was assessed. Antimicrobial efficacy was determined on solid (inhibition diameter) and liquid media to calculate the minimum inhibitory concentration (MIC). GC/MS profiling of EOAG revealed that 18 compounds were identified, with a dominance of alpha-Thujone (17.92%) followed by carvacrol (14.14%), with a total identification of about 99. 92%. The antioxidant activity of EOAG was determined to have IC50 values of 34.81 +/- 1.12 mu g/mL (DPPH), 89.37 +/- 5.02 mu g/mL (FRAP), and 1048.38 +/- 10.23 mu g EAA/mg (TAC). The antibacterial activity in a solid medium revealed that the largest diameter was recorded in P. aeruginosa (28.47 +/- 1.44 mm) followed by S. aureus (27.41 +/- 1.54 mm), and the MIC in S. aureus was 12.18 +/- 0.98 mu g / mL. For the antifungal activity of EOAG, the largest inhibition diameter was found in F. oxysporum (33.62 +/- 2.14 mm) followed by C. albicans (26.41 +/- 1.90 mm), and the smallest MIC was found in F. oxysporum (18.29 +/- 1.21 mu g/mL) followed by C. albicans (19.39 +/- 1.0 mu g/mL). In conclusion, EOAG can be useful as a natural antimicrobial and antioxidant agent and an alternative to synthetic antibiotics. Hence, they might be utilized to treat a variety of infectious disorders caused by pathogenic microorganisms, particularly those that have gained resistance to standard antibiotics.
引用
收藏
页数:12
相关论文
共 43 条
[41]   A Review on Cistus sp.: Phytochemical and Antimicrobial Activities [J].
Zalegh, Imane ;
Akssira, Mohamed ;
Bourhia, Mohammed ;
Mellouki, Fouad ;
Rhallabi, Naima ;
Salamatullah, Ahmad Mohammad ;
Alkaltham, Mohammed Saeed ;
Alyahya, Heba Khalil ;
Mhand, Rajaa Ait .
PLANTS-BASEL, 2021, 10 (06)
[42]   Chemical composition of the essential oil of Artemisia hedinii Ostenf. et Pauls. from the Qinghai-Tibetan Plateau [J].
Zhigzhitzhapova, S. V. ;
Radnaeva, L. D. ;
Chen, S. L. ;
Fu, P. C. ;
Zhang, F. Q. .
INDUSTRIAL CROPS AND PRODUCTS, 2014, 62 :293-298
[43]  
Znini M, 2011, NAT PROD COMMUN, V6, P1763