Periodic and Solitary Travelling Waves in Infinite Lattices without Ambrosetti-Rabinowitz Condition

被引:1
作者
Zhang, Xu [1 ,2 ]
Ma, Shiwang [1 ,2 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Travelling waves; Periodic and solitary; Superquadratic; Without Ar condition; EXISTENCE;
D O I
10.1007/s10884-014-9387-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider FPU lattices with particles of unit mass. The dynamics of the system is described by the infinite system of second order differential equations where denotes the displacement of the -th lattice site and is the potential of interaction between two adjacent particles. We investigate the existence of two kinds travelling wave solutions: periodic and solitary ones under some growth conditions on which is different from the widely used Ambrosetti-Rabinowitz condition.
引用
收藏
页码:419 / 430
页数:12
相关论文
共 50 条
  • [31] On double-phase problems without any growth and Ambrosetti-Rabinowitz conditions
    Ge, Bin
    Zhao, Jin-Wei
    Yuan, Wen-Shuo
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (09)
  • [32] Schrodinger-Poisson system without growth and the Ambrosetti-Rabinowitz conditions
    Huang, Chen
    Jia, Gao
    AIMS MATHEMATICS, 2020, 5 (02): : 1319 - 1332
  • [33] Fractional double phase Robin problem involving variable order-exponents without Ambrosetti-Rabinowitz condition
    Biswas, Reshmi
    Bahrouni, Sabri
    Carvalho, Marcos L.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (03):
  • [34] Multiplicity for Nonlinear Elliptic Boundary Value Problems of p-Laplacian Type Without Ambrosetti-Rabinowitz Condition
    Li, Gong-bao
    Li, Ying-hong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (01): : 157 - 180
  • [35] Multiplicity for nonlinear elliptic boundary value problems of p-Laplacian type without Ambrosetti-Rabinowitz condition
    Gong-bao Li
    Ying-hong Li
    Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 157 - 180
  • [36] Multiple solutions for a class of double phase problem without the Ambrosetti-Rabinowitz conditions
    Ge, Bin
    Lv, De-Jing
    Lu, Jian-Fang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 188 : 294 - 315
  • [37] Ground state solution to N-Kirchhoff equation with critical exponential growth and without Ambrosetti-Rabinowitz condition
    Gupta, Shilpa
    Dwivedi, Gaurav
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (01) : 45 - 56
  • [38] Multiplicity for Nonlinear Elliptic Boundary Value Problems of p-Laplacian Type Without Ambrosetti-Rabinowitz Condition
    Gong-bao LI
    Ying-hong LI
    Acta Mathematicae Applicatae Sinica, 2015, 31 (01) : 157 - 180
  • [39] A quasilinear problem without the Ambrosetti-Rabinowitz-type condition
    Iturriaga, Leonelo
    Lorca, Sebastian
    Ubilla, Pedro
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 : 391 - 398
  • [40] On a Class of Non-Local Kirchhoff-Type Double Phase Problem with Variable Exponents and Without the Ambrosetti-Rabinowitz Condition
    Bouaam, Hind
    El Ouaarabi, Mohamed
    Melliani, Said
    IRANIAN JOURNAL OF SCIENCE, 2025,