Non-autonomous dynamics of a semi-Kolmogorov population model with periodic forcing

被引:16
|
作者
Caraballo, Tomas [1 ]
Colucci, Renato [2 ]
Han, Xiaoying [3 ]
机构
[1] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, Apdo Correos 1160, Seville 41080, Spain
[2] Xian Jiaotong Liverpool Univ, Dept Math Sci, SIP, 111 Renai Rd, Suzhou 215123, Peoples R China
[3] Auburn Univ, Dept Math & Stat, 221 Parker Hall, Auburn, AL 36849 USA
关键词
Nonautonomous dynamical system; Population dynamics; Pullback attractor; HAUSDORFF DIMENSION; ATTRACTORS; STABILITY;
D O I
10.1016/j.nonrwa.2016.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a semi-Kolmogorov type of population model, arising from a predator-prey system with indirect effects. In particular we are interested in investigating the population dynamics when the indirect effects are time dependent and periodic. We first prove the existence of a global pullback attractor. We then estimate the fractal dimension of the attractor, which is done for a subclass by using Leonov's theorem and constructing a proper Lyapunov function. To have more insights about the dynamical behavior of the system we also study the coexistence of the three species. Numerical examples are provided to illustrate all the theoretical results. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:661 / 680
页数:20
相关论文
共 50 条
  • [1] Eventual stability properties in a non-autonomous model of population dynamics
    Denes, A.
    Hatvani, L.
    Stacho, L. L.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (03) : 650 - 659
  • [2] Quasi-periodic solutions of a non-autonomous wave equations with quasi-periodic forcing
    Si, Jianguo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) : 5274 - 5360
  • [3] Dynamics of non-autonomous oscillator with a controlled phase and frequency of external forcing
    Krylosova, D. A.
    Seleznev, E. P.
    Stankevich, N., V
    CHAOS SOLITONS & FRACTALS, 2020, 134
  • [4] Stochastic semi-linear degenerate parabolic model with multiplicative noise and deterministic non-autonomous forcing
    Guo, Zhouxiong
    Yang, Lu
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2019, 37 (01) : 90 - 114
  • [6] Periodic Dynamics of a Class of Non-autonomous Contact Hamiltonian Systems
    Li, Zhanyong
    Tang, Yaozong
    Bier, A. Mina Sha
    Ye, Jianguo
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (02) : 663 - 676
  • [7] Periodic Dynamics of a Class of Non-autonomous Contact Hamiltonian Systems
    Zhanyong Li
    Yaozong Tang
    A. Mina Sha Bier
    Jianguo Ye
    Journal of Nonlinear Mathematical Physics, 2023, 30 : 663 - 676
  • [8] Periodic motions generated from non-autonomous grazing dynamics
    Akhmet, M. U.
    Kivilcim, A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 49 : 48 - 62
  • [9] Almost periodic solution of a non-autonomous model of phytoplankton allelopathy
    Abbas, Syed
    Sen, Moitri
    Banerjee, Malay
    NONLINEAR DYNAMICS, 2012, 67 (01) : 203 - 214
  • [10] Almost periodic solution of a non-autonomous model of phytoplankton allelopathy
    Syed Abbas
    Moitri Sen
    Malay Banerjee
    Nonlinear Dynamics, 2012, 67 : 203 - 214