Constrained Spectral Clustering on Face Annotation System

被引:4
|
作者
Han, Jiajie [1 ]
Hu, Jiani [1 ]
Deng, Weihong [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Xi Tu Cheng Rd 10, Beijing 100876, Peoples R China
来源
PATTERN RECOGNITION (CCPR 2016), PT I | 2016年 / 662卷
基金
中国国家自然科学基金;
关键词
Face clustering; Spectral clustering; Constrained clustering; User interactions; Pairwise constraints;
D O I
10.1007/978-981-10-3002-4_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Face clustering is a common feature in face annotation system like intelligent photo albums and photo management systems. But unsupervised clustering algorithms perform poorly and researchers turn to work with constrained clustering algorithms that take the user interactions as constraints. Mostly, the constraints are pairwise constraints in the form of Must-Link or Cannot-Link, which can be easily integrated in spectral clustering algorithm. In this paper, we propose a design of face annotation system that can generate more informative constraints and better use constraints with constrained spectral clustering. And we examine the system in a lab situation dataset and a real-live dataset, of which results demonstrate the effectiveness of our method.
引用
收藏
页码:3 / 12
页数:10
相关论文
共 50 条
  • [41] A new model for constrained clustering
    Un nouveau modèle pour la classification non supervisée sous contraintes
    1600, Lavoisier (28): : 523 - 545
  • [42] Active Sampling for Constrained Clustering
    Okabe, Masayuki
    Yamada, Seiji
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2014, 18 (02) : 232 - 238
  • [43] Partition Level Constrained Clustering
    Liu, Hongfu
    Tao, Zhiqiang
    Fu, Yun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (10) : 2469 - 2483
  • [44] Enhanced SFLA with spectral clustering based co-evolution for 24 constrained industrial optimization problems
    Mehta, Shikha
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (12) : 17853 - 17878
  • [45] A framework for deep constrained clustering
    Zhang, Hongjing
    Zhan, Tianyang
    Basu, Sugato
    Davidson, Ian
    DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 35 (02) : 593 - 620
  • [46] Enhanced SFLA with spectral clustering based co-evolution for 24 constrained industrial optimization problems
    Shikha Mehta
    Multimedia Tools and Applications, 2023, 82 : 17853 - 17878
  • [47] Low-rank tensor constrained co-regularized multi-view spectral clustering
    Xu, Huiling
    Zhang, Xiangdong
    Xia, Wei
    Gao, Quanxue
    Gao, Xinbo
    NEURAL NETWORKS, 2020, 132 : 245 - 252
  • [48] Spectral Clustering by Joint Spectral Embedding and Spectral Rotation
    Pang, Yanwei
    Xie, Jin
    Nie, Feiping
    Li, Xuelong
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (01) : 247 - 258
  • [49] A tutorial on spectral clustering
    Ulrike von Luxburg
    Statistics and Computing, 2007, 17 : 395 - 416
  • [50] Power Spectral Clustering
    Challa, Aditya
    Danda, Sravan
    Sagar, B. S. Daya
    Najman, Laurent
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2020, 62 (09) : 1195 - 1213