Half-monopoles and half-vortices in the Yang-Mills theory

被引:16
作者
Harikumar, E [1 ]
Mitra, I [1 ]
Sharatchandra, HS [1 ]
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
关键词
monopole; Poincare-Hopf index; one-half winding number;
D O I
10.1016/S0370-2693(03)00203-X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is demonstrated that there are smooth Yang-Mills potentials which correspond to monopoles and vortices of one-half winding number. They are the generic configurations, in contrast to the integral winding number configurations like the 't Hooft-Polyakov monopole. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:303 / 308
页数:6
相关论文
共 12 条
[1]   Dual gluons and monopoles in 2+1 dimensional Yang-Mills theory [J].
Anishetty, R ;
Majumdar, P ;
Sharatchandra, HS .
PHYSICS LETTERS B, 2000, 478 (1-3) :373-378
[2]   TOPOLOGY OF HIGGS FIELDS [J].
ARAFUNE, J ;
FREUND, PGO ;
GOEBEL, CJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (02) :433-437
[3]   MAGNETIC MONOPOLES IN GAUGE FIELD-THEORIES [J].
GODDARD, P ;
OLIVE, DI .
REPORTS ON PROGRESS IN PHYSICS, 1978, 41 (09) :1357-1437
[4]   Half-integer winding number solutions to the Ginzburg-Landau-Higgs equations [J].
Govaerts, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (42) :8955-8993
[5]  
HARIKUMAR E, IMSC20021241
[6]  
HARIKUMAR E, HEPTH0212234
[7]  
LEONHARDT U, CONDMAT0003428
[8]   Gauge field copies [J].
Majumdar, P ;
Sharatchandra, HS .
PHYSICAL REVIEW D, 2001, 63 (06)
[9]  
POLYAKOV AM, 1974, JETP LETT+, V20, P194
[10]  
THOOFT G, 1981, NUCL PHYS B, V190, P455