Self-Propelled Particles with Velocity Reversals and Ferromagnetic Alignment: Active Matter Class with Second-Order Transition to Quasi-Long-Range Polar Order

被引:30
作者
Mahault, B. [1 ]
Jiang, X. -C. [2 ]
Bertin, E. [3 ,4 ]
Ma, Y. -Q. [2 ,5 ,6 ]
Patelli, A. [1 ]
Shi, X. -Q. [1 ,2 ]
Chate, H. [1 ,7 ,8 ]
机构
[1] Univ Paris Saclay, CNRS, Serv Phys Etat Condense, CEA,CEA Saclay, F-91191 Gif Sur Yvette, France
[2] Soochow Univ, Ctr Soft Condensed Matter Phys & Interdisciplinar, Suzhou 215006, Peoples R China
[3] Univ Grenoble Alpes, LIPHY, F-38000 Grenoble, France
[4] CNRS, F-38000 Grenoble, France
[5] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[6] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China
[7] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China
[8] Sorbonne Univ, CNRS, Lab Phys Theor Matiere Condensee, F-75005 Paris, France
基金
中国国家自然科学基金;
关键词
GIANT NUMBER FLUCTUATIONS; PHASE-TRANSITIONS; COLLECTIVE MOTION; SYSTEMS;
D O I
10.1103/PhysRevLett.120.258002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce and study in two dimensions a new class of dry, aligning active matter that exhibits a direct transition to orientational order, without the phase-separation phenomenology usually observed in this context. Characterized by self-propelled particles with velocity reversals and a ferromagnetic alignment of polarities, systems in this class display quasi-long-range polar order with continuously varying scaling exponents, yet a numerical study of the transition leads to conclude that it does not belong to the Berezinskii-Kosterlitz-Thouless universality class but is best described as a standard critical point with an algebraic divergence of correlations. We rationalize these findings by showing that the interplay between order and density changes the role of defects.
引用
收藏
页数:7
相关论文
共 53 条
[1]   Phase transitions in self-driven many-particle systems and related non-equilibrium models: A network approach [J].
Aldana, M ;
Huepe, C .
JOURNAL OF STATISTICAL PHYSICS, 2003, 112 (1-2) :135-153
[2]  
[Anonymous], 2012, PHYS REV LETT, V108
[3]   Nonequilibrium statistical mechanics of self-propelled hard rods [J].
Baskaran, Aparna ;
Marchetti, M. Cristina .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
[4]   Enhanced Diffusion and Ordering of Self-Propelled Rods [J].
Baskaran, Aparna ;
Marchetti, M. Cristina .
PHYSICAL REVIEW LETTERS, 2008, 101 (26)
[5]  
BEREZINSKII VL, 1971, SOV PHYS JETP-USSR, V32, P493
[6]   Boltzmann and hydrodynamic description for self-propelled particles [J].
Bertin, Eric ;
Droz, Michel ;
Gregoire, Guillaume .
PHYSICAL REVIEW E, 2006, 74 (02)
[7]   Mesoscopic theory for fluctuating active nematics [J].
Bertin, Eric ;
Chate, Hugues ;
Ginelli, Francesco ;
Mishra, Shradha ;
Peshkov, Anton ;
Ramaswamy, Sriram .
NEW JOURNAL OF PHYSICS, 2013, 15
[8]   Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis [J].
Bertin, Eric ;
Droz, Michel ;
Gregoire, Guillaume .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (44)
[9]   Emergent Spatial Structures in Flocking Models: A Dynamical System Insight [J].
Caussin, Jean-Baptiste ;
Solon, Alexandre ;
Peshkov, Anton ;
Chate, Hugues ;
Dauxois, Thierry ;
Tailleur, Julien ;
Vitelli, Vincenzo ;
Bartolo, Denis .
PHYSICAL REVIEW LETTERS, 2014, 112 (14)
[10]   Scale-free correlations in starling flocks [J].
Cavagna, Andrea ;
Cimarelli, Alessio ;
Giardina, Irene ;
Parisi, Giorgio ;
Santagati, Raffaele ;
Stefanini, Fabio ;
Viale, Massimiliano .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (26) :11865-11870