Sparse Quantum Codes from Quantum Circuits

被引:11
|
作者
Bacon, Dave [1 ]
Flammia, Steven T. [2 ]
Harrow, Aram W. [3 ]
Shi, Jonathan [4 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Univ Sydney, Sydney, NSW, Australia
[3] MIT, Cambridge, MA 02139 USA
[4] Cornell, Ithaca, NY USA
来源
STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING | 2015年
基金
美国国家科学基金会;
关键词
ERROR-CORRECTING CODES; SURFACE CODES;
D O I
10.1145/2746539.2746608
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Sparse quantum codes are analogous to LDPC codes in that their check operators require examining only a constant number of qubits. In contrast to LDPC codes, good sparse quantum codes are not known, and even to encode a single qubit, the best known distance is O(root n log(n)), due to Freedman, Meyer and Luo. We construct a new family of sparse quantum subsystem codes with minimum distance n(1-epsilon) for epsilon = O(1/root log n). A variant of these codes exists in D spatial dimensions and has d = n(1-epsilon-1/D) nearly saturating a bound due to Bravyi and Terhal. Our construction is based on a new general method for turning quantum circuits into sparse quantum subsystem codes. Using this prescription, we can map an arbitrary stabilizer code into a new subsystem code with the same distance and number of encoded qubits but where all the generators have constant weight, at the cost of adding some ancilla qubits. With an additional overhead of ancilla qubits, the new code can also be made spatially local.
引用
收藏
页码:327 / 334
页数:8
相关论文
共 50 条
  • [41] Quantum XYZ Product Codes
    Leverrier, Anthony
    Apers, Simon
    Vuillot, Christophe
    QUANTUM, 2022, 6
  • [42] On a Problem Concerning the Quantum Hamming Bound for Impure Quantum Codes
    Li, Zhuo
    Xing, Lijuan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (09) : 4731 - 4734
  • [43] Decoding Quantum Tanner Codes
    Leverrier, Anthony
    Zemor, Gilles
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (08) : 5100 - 5115
  • [44] ON QUANTUM TENSOR PRODUCT CODES
    Fan, Jihao
    Li, Yonghui
    Hsieh, Min-Hsiu
    Chen, Hanwu
    QUANTUM INFORMATION & COMPUTATION, 2017, 17 (13-14) : 1105 - 1122
  • [45] Algebraic quantum codes: linking quantum mechanics and discrete mathematics
    Grassl, Markus
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS- COMPUTER SYSTEMS THEORY, 2021, 6 (04) : 243 - 259
  • [46] Constant Overhead Quantum Fault Tolerance with Quantum Expander Codes
    Fawzi, Omar
    Grospellier, Antoine
    Leverrier, Anthony
    COMMUNICATIONS OF THE ACM, 2021, 64 (01) : 106 - 114
  • [47] New quantum stabilizer codes with better parameters from the images of some RS codes and BCH codes
    Wang, Xueting
    Yan, Tongjiang
    Sun, Yuhua
    Wang, Tao
    QUANTUM INFORMATION PROCESSING, 2023, 22 (01)
  • [48] New Non-Binary Quantum Codes Derived From a Class of Linear Codes
    Gao, Jian
    Wang, Yongkang
    IEEE ACCESS, 2019, 7 : 26418 - 26421
  • [49] Maximal Entanglement Entanglement-assisted Quantum Codes from Quaternary BCH Codes
    Lv, Liangdong
    Li, Ruihu
    Fu, Qiang
    Li, Xueliang
    2015 IEEE ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2015, : 709 - 713
  • [50] Entanglement-assisted quantum codes constructed from primitive quaternary BCH codes
    Lu, Liang-Dong
    Li, Ruihu
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2014, 12 (03)