Sparse Quantum Codes from Quantum Circuits

被引:11
|
作者
Bacon, Dave [1 ]
Flammia, Steven T. [2 ]
Harrow, Aram W. [3 ]
Shi, Jonathan [4 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Univ Sydney, Sydney, NSW, Australia
[3] MIT, Cambridge, MA 02139 USA
[4] Cornell, Ithaca, NY USA
来源
STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING | 2015年
基金
美国国家科学基金会;
关键词
ERROR-CORRECTING CODES; SURFACE CODES;
D O I
10.1145/2746539.2746608
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Sparse quantum codes are analogous to LDPC codes in that their check operators require examining only a constant number of qubits. In contrast to LDPC codes, good sparse quantum codes are not known, and even to encode a single qubit, the best known distance is O(root n log(n)), due to Freedman, Meyer and Luo. We construct a new family of sparse quantum subsystem codes with minimum distance n(1-epsilon) for epsilon = O(1/root log n). A variant of these codes exists in D spatial dimensions and has d = n(1-epsilon-1/D) nearly saturating a bound due to Bravyi and Terhal. Our construction is based on a new general method for turning quantum circuits into sparse quantum subsystem codes. Using this prescription, we can map an arbitrary stabilizer code into a new subsystem code with the same distance and number of encoded qubits but where all the generators have constant weight, at the cost of adding some ancilla qubits. With an additional overhead of ancilla qubits, the new code can also be made spatially local.
引用
收藏
页码:327 / 334
页数:8
相关论文
共 50 条
  • [31] New Quantum Codes Derived from Group Rings
    Yu, Cong
    Zhu, Shixin
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2023, 62 (06)
  • [32] New entanglement-assisted MDS quantum codes from constacyclic codes
    Koroglu, Mehmet E.
    QUANTUM INFORMATION PROCESSING, 2019, 18 (02)
  • [33] QUANTUM CODES FROM CODES OVER GAUSSIAN INTEGERS WITH RESPECT TO THE MANNHEIM METRIC
    Ozen, Mehmet
    Guzeltepe, Murat
    QUANTUM INFORMATION & COMPUTATION, 2012, 12 (9-10) : 813 - 819
  • [34] On quantum SPC product codes
    Hivadi, M.
    QUANTUM INFORMATION PROCESSING, 2018, 17 (12)
  • [35] Quantum bicyclic hyperbolic codes
    Rayudu, Sankara Sai Chaithanya
    Sarvepalli, Pradeep Kiran
    QUANTUM INFORMATION PROCESSING, 2020, 19 (08)
  • [36] Quantum block and convolutional codes from self-orthogonal product codes
    Grassl, M
    Rötteler, M
    2005 IEEE International Symposium on Information Theory (ISIT), Vols 1 and 2, 2005, : 1018 - 1022
  • [37] An Explicit Construction of Quantum Stabilizer Codes From Quasi-Cyclic Codes
    Lv, Jingjie
    Li, Ruihu
    Wang, Junli
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (05) : 1067 - 1071
  • [38] Quantum Serial Turbo Codes
    Poulin, David
    Tillich, Jean-Pierre
    Ollivier, Harold
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (06) : 2776 - 2798
  • [39] Golay codes and quantum contextuality
    Waegell, Mordecai
    Aravind, K.
    PHYSICAL REVIEW A, 2022, 106 (06)
  • [40] Logical operators of quantum codes
    Wilde, Mark M.
    PHYSICAL REVIEW A, 2009, 79 (06):