Sparse Quantum Codes from Quantum Circuits

被引:11
|
作者
Bacon, Dave [1 ]
Flammia, Steven T. [2 ]
Harrow, Aram W. [3 ]
Shi, Jonathan [4 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Univ Sydney, Sydney, NSW, Australia
[3] MIT, Cambridge, MA 02139 USA
[4] Cornell, Ithaca, NY USA
来源
STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING | 2015年
基金
美国国家科学基金会;
关键词
ERROR-CORRECTING CODES; SURFACE CODES;
D O I
10.1145/2746539.2746608
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Sparse quantum codes are analogous to LDPC codes in that their check operators require examining only a constant number of qubits. In contrast to LDPC codes, good sparse quantum codes are not known, and even to encode a single qubit, the best known distance is O(root n log(n)), due to Freedman, Meyer and Luo. We construct a new family of sparse quantum subsystem codes with minimum distance n(1-epsilon) for epsilon = O(1/root log n). A variant of these codes exists in D spatial dimensions and has d = n(1-epsilon-1/D) nearly saturating a bound due to Bravyi and Terhal. Our construction is based on a new general method for turning quantum circuits into sparse quantum subsystem codes. Using this prescription, we can map an arbitrary stabilizer code into a new subsystem code with the same distance and number of encoded qubits but where all the generators have constant weight, at the cost of adding some ancilla qubits. With an additional overhead of ancilla qubits, the new code can also be made spatially local.
引用
收藏
页码:327 / 334
页数:8
相关论文
共 50 条
  • [1] Sparse Quantum Codes From Quantum Circuits
    Bacon, Dave
    Flammia, Steven T.
    Harrow, Aram W.
    Shi, Jonathan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (04) : 2464 - 2479
  • [2] Quantum circuits for stabilizer codes
    Wu, CH
    Tsai, YC
    Tsai, HL
    2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 2333 - 2336
  • [3] Optimization of Quantum Circuits for Stabilizer Codes
    Mondal, Arijit
    Parhi, Keshab K.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024, 71 (08) : 3647 - 3657
  • [4] Surface codes, quantum circuits, and entanglement phases
    Behrends, Jan
    Venn, Florian
    Beri, Benjamin
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [5] Feedback iterative decoding of sparse quantum codes
    Wang Yun-Jiang
    Bai Bao-Ming
    Wang Xin-Mei
    ACTA PHYSICA SINICA, 2010, 59 (11) : 7591 - 7595
  • [6] Toward Quantum CSS-T Codes from Sparse Matrices
    Camps-Moreno, Eduardo
    Lopez, Hiram H.
    Matthews, Gretchen L.
    McMillon, Emily
    2024 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY WORKSHOPS, ISIT-W 2024, 2024,
  • [7] Enhanced Feedback Iterative Decoding of Sparse Quantum Codes
    Wang, Yun-Jiang
    Sanders, Barry C.
    Bai, Bao-Ming
    Wang, Xin-Mei
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (02) : 1231 - 1241
  • [8] Quantum convolutional codes derived from constacyclic codes
    Yan, Tingsu
    Huang, Xinmei
    Tang, Yuansheng
    MODERN PHYSICS LETTERS B, 2014, 28 (31):
  • [9] Quantum codes from Hadamard matrices
    Ke, W. F.
    Lai, K. F.
    Zhang, R. B.
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (07) : 847 - 854
  • [10] HYPERBOLIC QUANTUM COLOR CODES
    Soares, Waldir Silva, Jr.
    Da Silva, Eduardo Brandani
    QUANTUM INFORMATION & COMPUTATION, 2018, 18 (3-4) : 306 - 318