Experimental study of thermal rectification in suspended monolayer graphene

被引:282
作者
Wang, Haidong [1 ]
Hu, Shiqian [2 ,3 ,4 ,5 ]
Takahashi, Koji [6 ,7 ]
Zhang, Xing [7 ,8 ]
Takamatsu, Hiroshi [1 ]
Chen, Jie [2 ,3 ,4 ,5 ]
机构
[1] Kyushu Univ, Dept Mech Engn, Fukuoka 8190395, Japan
[2] Tongji Univ, Sch Phys Sci & Engn, Ctr Phonon & Thermal Energy Sci, Shanghai 200092, Peoples R China
[3] Tongji Univ, Inst Adv Study, Shanghai 200092, Peoples R China
[4] Tongji Univ, Sch Phys Sci & Engn, China EU Joint Lab Nanophonon, Shanghai 200092, Peoples R China
[5] Tongji Univ, Sch Phys Sci & Engn, Shanghai Key Lab Special Artificial Microstruct M, Shanghai 200092, Peoples R China
[6] Kyushu Univ, Dept Aeronaut & Astronaut, Fukuoka 8190395, Japan
[7] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Fukuoka 8190395, Japan
[8] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
HEAT-TRANSPORT; CONDUCTIVITY;
D O I
10.1038/ncomms15843
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermal rectification is a fundamental phenomenon for active heat flow control. Significant thermal rectification is expected to exist in the asymmetric nanostructures, such as nanowires and thin films. As a one-atom-thick membrane, graphene has attracted much attention for realizing thermal rectification as shown by many molecular dynamics simulations. Here, we experimentally demonstrate thermal rectification in various asymmetric monolayer graphene nanostructures. A large thermal rectification factor of 26% is achieved in a defect-engineered monolayer graphene with nanopores on one side. A thermal rectification factor of 10% is achieved in a pristine monolayer graphene with nanoparticles deposited on one side or with a tapered width. The results indicate that the monolayer graphene has great potential to be used for designing high-performance thermal rectifiers for heat flow control and energy harvesting.
引用
收藏
页数:8
相关论文
共 38 条
[1]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[2]   Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition [J].
Cai, Weiwei ;
Moore, Arden L. ;
Zhu, Yanwu ;
Li, Xuesong ;
Chen, Shanshan ;
Shi, Li ;
Ruoff, Rodney S. .
NANO LETTERS, 2010, 10 (05) :1645-1651
[3]   Thermal Rectification by Design in Telescopic Si Nanowires [J].
Cartoixa, Xavier ;
Colombo, Luciano ;
Rurali, Riccardo .
NANO LETTERS, 2015, 15 (12) :8255-8259
[4]   Solid-state thermal rectifier [J].
Chang, C. W. ;
Okawa, D. ;
Majumdar, A. ;
Zettl, A. .
SCIENCE, 2006, 314 (5802) :1121-1124
[5]   Covalently Bonded Graphene-Carbon Nanotube Hybrid for High-Performance Thermal Interfaces [J].
Chen, Jie ;
Walther, Jens H. ;
Koumoutsakos, Petros .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (48) :7539-7545
[6]   A universal gauge for thermal conductivity of silicon nanowires with different cross sectional geometries [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (20)
[7]   Remarkable Reduction of Thermal Conductivity in Silicon Nanotubes [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
NANO LETTERS, 2010, 10 (10) :3978-3983
[8]   Molecular Dynamics Simulations of Heat Conduction in Nanostructures: Effect of Heat Bath [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (07)
[9]   Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction [J].
Chen, Xue-Kun ;
Xie, Zhong-Xiang ;
Zhou, Wu-Xing ;
Tang, Li-Ming ;
Chen, Ke-Qiu .
CARBON, 2016, 100 :492-500
[10]   Solid-State Thermal Rectification With Existing Bulk Materials [J].
Dames, C. .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2009, 131 (06) :1-7