Construction of Kn-minor free graphs with given circular chromatic number

被引:8
作者
Liaw, SC [1 ]
Pan, ZS [1 ]
Zhu, XD [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
关键词
circular chromatic numbers; K-n-minor free graphs; series-parallel construction; planar graphs; Hadwiger conjecture;
D O I
10.1016/S0012-365X(02)00529-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each integer n greater than or equal to 5 and each rational number r in the interval [2, n - I], we construct a K-n-minor free graph G with chi(c)(G) = r. This answers a question asked by Zhu (Discrete Mathematics, 229 (1-3) (2001) 371). In case n = 5, the constructed graphs are actually planar. Such planar graphs were first constructed in J. Graph Theory 24 (1997) 33 (for E [2, 3]) and in J. Combin. Theory 76 (1999) 170 (for r is an element of [3,4]). However, our construction and proof are much simpler. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:191 / 206
页数:16
相关论文
共 17 条
[1]  
BAUSLAUGH B, 1998, B I COMBIN APPL, V24, P79
[2]   A NOTE ON THE STAR CHROMATIC NUMBER [J].
BONDY, JA ;
HELL, P .
JOURNAL OF GRAPH THEORY, 1990, 14 (04) :479-482
[3]  
Chien CY, 2000, J GRAPH THEOR, V33, P185, DOI 10.1002/(SICI)1097-0118(200004)33:4<185::AID-JGT1>3.0.CO
[4]  
2-N
[5]  
Hell P, 2000, J GRAPH THEOR, V33, P14, DOI 10.1002/(SICI)1097-0118(200001)33:1<14::AID-JGT2>3.0.CO
[6]  
2-#
[7]  
Moser D, 1997, J GRAPH THEOR, V24, P33, DOI 10.1002/(SICI)1097-0118(199701)24:1<33::AID-JGT5>3.0.CO
[8]  
2-K
[9]  
PAN Z, 1999, UNPUB DENSITY CIRCUL
[10]   The circular chromatic number of series-parallel graphs of large odd girth [J].
Pan, ZS ;
Zhu, XD .
DISCRETE MATHEMATICS, 2002, 245 (1-3) :235-246