Diffusion on the Scaling Limit of the Critical Percolation Cluster in the Diamond Hierarchical Lattice

被引:21
|
作者
Hambly, B. M. [1 ]
Kumagai, T. [2 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
关键词
INCIPIENT INFINITE CLUSTER; QUENCHED INVARIANCE-PRINCIPLES; CONTINUUM RANDOM TREE; RANDOM-WALK; SPECTRAL ASYMPTOTICS; RENEWAL THEOREM; FRACTAL LATTICES; BROWNIAN-MOTION; VOLUME GROWTH; HEAT;
D O I
10.1007/s00220-009-0981-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct critical percolation clusters on the diamond hierarchical lattice and show that the scaling limit is a graph directed random recursive fractal. A Dirichlet form can be constructed on the limit set and we consider the properties of the associated Laplace operator and diffusion process. In particular we contrast and compare the behaviour of the high frequency asymptotics of the spectrum and the short time behaviour of the on-diagonal heat kernel for the percolation clusters and for the underlying lattice. In this setting a number of features of the lattice are inherited by the critical cluster.
引用
收藏
页码:29 / 69
页数:41
相关论文
共 50 条
  • [31] High-Temperature Scaling Limit for Directed Polymers on a Hierarchical Lattice with Bond Disorder
    Jeremy Thane Clark
    Journal of Statistical Physics, 2019, 174 : 1372 - 1403
  • [32] SCALING ASSUMPTION FOR LATTICE ANIMALS IN PERCOLATION THEORY
    STAUFFER, D
    JOURNAL OF STATISTICAL PHYSICS, 1978, 18 (02) : 125 - 136
  • [33] Scaling behavior of explosive percolation on the square lattice
    Ziff, Robert M.
    PHYSICAL REVIEW E, 2010, 82 (05)
  • [34] SCALING FORM FOR PERCOLATION CLUSTER SIZES AND PERIMETERS
    REICH, GR
    LEATH, PL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (03): : 360 - 360
  • [35] SCALING FORM FOR PERCOLATION CLUSTER SIZES AND PERIMETERS
    LEATH, PL
    REICH, GR
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1978, 11 (19): : 4017 - 4036
  • [36] Long-range percolation on the hierarchical lattice
    Koval, Vyacheslav
    Meester, Ronald
    Trapman, Pieter
    ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 : 1 - 21
  • [37] Survival probability for diffusion on a percolation cluster
    Palacz, K
    Kurzynski, M
    Chelminiak, P
    Gorny, M
    ACTA PHYSICA POLONICA B, 1997, 28 (08): : 1843 - 1852
  • [38] Critical percolation on a Bethe lattice revisited
    Braga, GA
    Sanchis, R
    Schieber, TA
    SIAM REVIEW, 2005, 47 (02) : 349 - 365
  • [39] The geometry of a critical percolation cluster on the UIPT
    Gorny, Matthias
    Maurel-Segala, Edouard
    Singh, Arvind
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (04): : 2203 - 2238
  • [40] CLUSTER SIZE DISTRIBUTION FOR CRITICAL PERCOLATION
    QUINN, GD
    BISHOP, GH
    HARRISON, RJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (01): : L9 - L14