Diffusion on the Scaling Limit of the Critical Percolation Cluster in the Diamond Hierarchical Lattice

被引:21
|
作者
Hambly, B. M. [1 ]
Kumagai, T. [2 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
关键词
INCIPIENT INFINITE CLUSTER; QUENCHED INVARIANCE-PRINCIPLES; CONTINUUM RANDOM TREE; RANDOM-WALK; SPECTRAL ASYMPTOTICS; RENEWAL THEOREM; FRACTAL LATTICES; BROWNIAN-MOTION; VOLUME GROWTH; HEAT;
D O I
10.1007/s00220-009-0981-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct critical percolation clusters on the diamond hierarchical lattice and show that the scaling limit is a graph directed random recursive fractal. A Dirichlet form can be constructed on the limit set and we consider the properties of the associated Laplace operator and diffusion process. In particular we contrast and compare the behaviour of the high frequency asymptotics of the spectrum and the short time behaviour of the on-diagonal heat kernel for the percolation clusters and for the underlying lattice. In this setting a number of features of the lattice are inherited by the critical cluster.
引用
收藏
页码:29 / 69
页数:41
相关论文
共 50 条
  • [21] Scaling for the critical percolation backbone
    Barthélémy, M
    Buldyrev, SV
    Havlin, S
    Stanley, HE
    PHYSICAL REVIEW E, 1999, 60 (02): : R1123 - R1125
  • [22] PERCOLATION - SCALING AND CRITICAL EXPONENTS
    KUNZ, H
    PAYANDEH, B
    HELVETICA PHYSICA ACTA, 1978, 51 (01): : 110 - 110
  • [23] Scaling for the critical percolation backbone
    Barthelemy, M.
    Buldyrev, S.V.
    Havlin, S.
    Stanley, H.E.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 60 (2 A):
  • [24] PERCOLATION AND SCALING ON A QUASI-LATTICE
    LU, JP
    BIRMAN, JL
    JOURNAL OF STATISTICAL PHYSICS, 1987, 46 (5-6) : 1057 - 1066
  • [25] Scaling of cluster heterogeneity in percolation transitions
    Noh, Jae Dong
    Lee, Hyun Keun
    Park, Hyunggyu
    PHYSICAL REVIEW E, 2011, 84 (01)
  • [26] SCALING BEHAVIOR OF DIFFUSION ON PERCOLATION CLUSTERS
    HAVLIN, S
    BENAVRAHAM, D
    SOMPOLINSKY, H
    PHYSICAL REVIEW A, 1983, 27 (03): : 1730 - 1733
  • [27] CLUSTER SHAPES IN LATTICE GASES AND PERCOLATION
    DOMB, C
    SCHNEIDER, T
    STOLL, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1975, 8 (09): : L90 - L94
  • [28] THE CRITICAL TWO-POINT FUNCTION FOR LONG-RANGE PERCOLATION ON THE HIERARCHICAL LATTICE
    Hutchcroft, Tom
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (1B): : 986 - 1002
  • [29] High-Temperature Scaling Limit for Directed Polymers on a Hierarchical Lattice with Bond Disorder
    Clark, Jeremy Thane
    JOURNAL OF STATISTICAL PHYSICS, 2019, 174 (06) : 1372 - 1403
  • [30] Critical scaling and percolation in manganite films
    Ziese, M
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (13) : 2919 - 2934