Diffusion on the Scaling Limit of the Critical Percolation Cluster in the Diamond Hierarchical Lattice

被引:21
|
作者
Hambly, B. M. [1 ]
Kumagai, T. [2 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
关键词
INCIPIENT INFINITE CLUSTER; QUENCHED INVARIANCE-PRINCIPLES; CONTINUUM RANDOM TREE; RANDOM-WALK; SPECTRAL ASYMPTOTICS; RENEWAL THEOREM; FRACTAL LATTICES; BROWNIAN-MOTION; VOLUME GROWTH; HEAT;
D O I
10.1007/s00220-009-0981-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct critical percolation clusters on the diamond hierarchical lattice and show that the scaling limit is a graph directed random recursive fractal. A Dirichlet form can be constructed on the limit set and we consider the properties of the associated Laplace operator and diffusion process. In particular we contrast and compare the behaviour of the high frequency asymptotics of the spectrum and the short time behaviour of the on-diagonal heat kernel for the percolation clusters and for the underlying lattice. In this setting a number of features of the lattice are inherited by the critical cluster.
引用
收藏
页码:29 / 69
页数:41
相关论文
共 50 条
  • [1] Diffusion on the Scaling Limit of the Critical Percolation Cluster in the Diamond Hierarchical Lattice
    B. M. Hambly
    T. Kumagai
    Communications in Mathematical Physics, 2010, 295 : 29 - 69
  • [2] The scaling limit of two cluster boundaries in critical lattice models
    Gamsa, A
    Cardy, J
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, : 237 - 262
  • [3] RESISTOR DIODE PERCOLATION ON THE HIERARCHICAL DIAMOND LATTICE
    DASILVA, JKL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (13): : 2685 - 2688
  • [4] Critical cluster volumes in hierarchical percolation
    Hutchcroft, Tom
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2025, 130 (01)
  • [5] SCALING LIMIT OF THE INVASION PERCOLATION CLUSTER ON A REGULAR TREE
    Angel, Omer
    Goodman, Jesse
    Merle, Mathieu
    ANNALS OF PROBABILITY, 2013, 41 (01): : 229 - 261
  • [6] DIFFUSION ON LOOPLESS CRITICAL PERCOLATION CLUSTER
    MUKHERJEE, S
    JACOBS, DJ
    NAKANISHI, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (02): : 291 - 296
  • [7] Scaling behavior of diffusion limited aggregation in percolation cluster
    Tang, Qiang
    MODERN PHYSICS LETTERS B, 2008, 22 (07): : 507 - 513
  • [8] Two-Dimensional Critical Percolation: The Full Scaling Limit
    Federico Camia
    Charles M. Newman
    Communications in Mathematical Physics, 2006, 268 : 1 - 38
  • [9] Two-dimensional critical percolation: The full scaling limit
    Camia, Federico
    Newman, Charles M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (01) : 1 - 38
  • [10] Percolation in a Hierarchical Lattice
    Shang, Yilun
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (05): : 225 - 229