EXISTENCE, UNIQUENESS AND STABILITY OF TRAVELING WAVE FRONTS OF DISCRETE QUASI-LINEAR EQUATIONS WITH DELAY

被引:6
|
作者
Lv, Guangying [1 ]
Wang, Mingxin [1 ,2 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210018, Peoples R China
[2] Harbin Inst Technol, Ctr Sci Res, Harbin 150080, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2010年 / 13卷 / 02期
关键词
Existence; Uniqueness; Stability; Traveling wave fronts; Discrete quasi-linear equations; Delay; ASYMPTOTIC STABILITY; PROPAGATION; SYSTEMS; FAILURE;
D O I
10.3934/dcdsb.2010.13.415
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence, uniqueness and a symptotically stability of traveling wave fronts of discrete quasi-linear equations with delay. We first establish the existence of traveling wave fronts by using the super-subsolution and monotone iteration technique. Then we show that the traveling wave front is unique upto a translation. At last, we employ the comparison principle and the squeezing technique to prove that the traveling wave front is globally asymptotic stable with phase shift.
引用
收藏
页码:415 / 433
页数:19
相关论文
共 50 条
  • [1] Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay
    Wang, Zhi-Cheng
    Li, Wan-Tong
    Ruan, Shigui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 238 (01) : 153 - 200
  • [2] Existence, uniqueness and asymptotic behavior of traveling wave fronts for a generalized Fisher equation with nonlocal delay
    Wei, Jingdong
    Tian, Lixin
    Zhou, Jiangbo
    Zhen, Zaili
    CHAOS SOLITONS & FRACTALS, 2017, 103 : 536 - 543
  • [3] EXPLOSIVE SOLUTIONS OF QUASI-LINEAR ELLIPTIC-EQUATIONS - EXISTENCE AND UNIQUENESS
    DIAZ, G
    LETELIER, R
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (02) : 97 - 125
  • [4] Existence, uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems
    Wang, ZhiCheng
    Li, WanTong
    Ruan, ShiGui
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (10) : 1869 - 1908
  • [5] EXISTENCE AND UNIQUENESS OF MILD SOLUTIONS FOR QUASI-LINEAR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
    Ramos, Priscila Santos
    Sousa, J. Vanterler Da C.
    De Oliveira, E. Capelas
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (01): : 1 - 24
  • [6] Asymptotic stability of traveling wave fronts in nonlocal reaction-diffusion equations with delay
    Wu, Shi-Liang
    Li, Wan-Tong
    Liu, San-Yang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (02) : 439 - 458
  • [7] TRAVELING CURVED FRONTS OF BISTABLE REACTION-DIFFUSION EQUATIONS WITH DELAY
    Bao, Xiongxiong
    Huang, Wen-Hui
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [8] Existence, uniqueness and asymptotic behavior of traveling wave fronts for a vector disease model
    Lv, Guangying
    Wang, Mingxin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (03) : 2035 - 2043
  • [9] Nonlinear stability of traveling wave fronts for nonlocal delayed reaction-diffusion equations
    Lv, Guangying
    Wang, Mingxin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (02) : 1094 - 1106
  • [10] Existence, uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems
    WANG ZhiCheng
    LI WanTong
    RUAN ShiGui
    ScienceChina(Mathematics), 2016, 59 (10) : 1869 - 1908