High-temperature x-ray diffraction measurement of sanidine thermal expansion

被引:13
|
作者
Mackert, JR [1 ]
Twiggs, SW [1 ]
Williams, AL [1 ]
机构
[1] Med Coll Georgia, Sch Dent, Dept Oral Rehabil, Sect Dent Mat, Augusta, GA 30912 USA
关键词
dental porcelain; leucite; sanidine; thermal expansion; x-ray diffraction;
D O I
10.1177/00220345000790081101
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Dental porcelains that are designed to be fused to PFM (porcelain-fused-to-metal) alloys are formulated by their manufacturers to be closely matched in thermal expansion to these alloys. The high thermal expansion of the mineral leucite has been exploited to regulate porcelain expansion. Leucite, however, has been observed to convert to the sanidine polymorph of feldspar during certain heat treatments within the normal firing range of dental porcelain. The effects of this conversion on porcelain thermal expansion and porcelain-metal thermal compatibility have been uncertain, due to the paucity of published data on the thermal expansion of sanidine. The purpose of this study was to measure the thermal expansion of sanidine by high-temperature x-ray diffraction over the temperature range in which thermal mismatch stresses can develop in porcelain-fused-to-metal restorations, i.e., from room temperature to 700 degrees C. The lattice parameters a, b, c, and beta were determined from the d-spacings and hkl values of multiple reflections by means of a least-squares iteration. The dependence of each lattice parameter on temperature was determined via analysis of variance, and the coefficient of thermal expansion, alpha was obtained from this analysis. The lattice parameters of sanidine at room temperature were determined to be: a = 0.8524 +/- 0.0015 nm, b = 1.3020 +/- 0.0004 nm, c = 0.7165 +/- 0.0002 nm and beta = 116.02 degrees +/- 0.01 degrees (mean +/- 95% confidence interval). The linear thermal expansion coefficient, alpha over the range from room temperature to 700 degrees C was determined to be 4.1x10(-6) K-1 +/- 0.6x10(6) K-1 (mean +/- 95% confidence interval). Because the coefficient of thermal expansion for sanidine is substantially lower than that of leucite (the effective linear thermal coefficient of thermal expansion of leucite over the range of 25 degrees to 700 degrees C is 28X10(6) K-1), the conversion of leucite to sanidine during porcelain heat treatments would produce a detrimental lowering of the porcelain thermal expansion.
引用
收藏
页码:1590 / 1595
页数:6
相关论文
共 50 条
  • [1] Stable lattice thermal expansion of ZIRLO™: High-temperature X-ray diffraction results
    Youn, Young-Sang
    Park, Jeongmi
    Lim, Sang Ho
    JOURNAL OF NUCLEAR MATERIALS, 2019, 523 : 66 - 70
  • [2] Thermal expansion of manganese dioxide using high-temperature in situ X-ray diffraction
    Dose, Wesley M.
    Donne, Scott W.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2013, 46 : 1283 - 1288
  • [3] Thermal effect on BaFCl: High-temperature X-ray diffraction
    Kesavamoorthy, R
    Sundarakkannan, B
    Rao, GVN
    Sastry, VS
    THERMOCHIMICA ACTA, 1997, 307 (02) : 185 - 195
  • [4] Anisotropic Thermal Expansion of Barium Hexaferrite Using Dynamic High-temperature X-ray Diffraction
    D. Sriram
    R. L. Snyder
    V. R. W. Amarakoon
    Journal of Materials Research, 2000, 15 : 1349 - 1353
  • [5] Thermal expansion measurements of nano-graphite using high-temperature X-ray diffraction
    Akikubo, Kazuma
    Kurahashi, Tyler
    Kawaguchi, Sota
    Tachibana, Masaru
    CARBON, 2020, 169 : 307 - 311
  • [6] Anisotropic thermal expansion of barium hexaferrite using dynamic high-temperature x-ray diffraction
    Sriram, D
    Snyder, RL
    Amarakoon, VRW
    JOURNAL OF MATERIALS RESEARCH, 2000, 15 (06) : 1349 - 1353
  • [7] High-temperature X-ray investigation of sanidine-analbite crystalline solutions: Thermal expansion, phase transitions, and volumes of mixing
    Hovis, GL
    Brennan, S
    Keohane, M
    Crelling, J
    CANADIAN MINERALOGIST, 1999, 37 : 701 - 709
  • [8] X-ray diffraction study on the thermal expansion behavior of cellulose Iβ and its high-temperature phase
    Wada, Masahisa
    Hori, Ritsuko
    Kim, Ung-Jin
    Sasaki, Sono
    POLYMER DEGRADATION AND STABILITY, 2010, 95 (08) : 1330 - 1334
  • [9] High-Temperature X-ray Diffraction Study of the Thermal Expansion and Stability of Nanocrystalline VB2
    Kovalev, D. Yu.
    Khomenko, N. Yu.
    Shilkin, S. P.
    INORGANIC MATERIALS, 2019, 55 (11) : 1111 - 1117
  • [10] High-Temperature X-ray Diffraction Study of the Thermal Expansion and Stability of Nanocrystalline VB2
    D. Yu. Kovalev
    N. Yu. Khomenko
    S. P. Shilkin
    Inorganic Materials, 2019, 55 : 1111 - 1117