Numerical Solution of Two Dimensional Time-Space Fractional Fokker Planck Equation With Variable Coefficients

被引:2
作者
Mahmoud, Elsayed I. [1 ,2 ]
Orlov, Viktor N. [3 ]
机构
[1] Zagazig Univ, Fac Sci, Dept Math, Zagazig 44519, Egypt
[2] Peoples Friendship Univ Russia, Nikolskii Math Inst, Moscow 117198, Russia
[3] Moscow State Univ Civil Engn, Dept Appl Math, Yaroslavskoe Shosse 26, Moscow 129337, Russia
关键词
two-dimensional time-space fractional Fokker-Planck equation; standard and shifted Grunwald approximation; Riemann-Liouville fractional derivative; Caputo fractional derivative; implicit finite difference scheme; stability and convergence; VIBRATION STRING EQUATION; ORDER;
D O I
10.3390/math9111260
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a practical numerical method, an implicit finite-difference scheme for solving a two-dimensional time-space fractional Fokker-Planck equation with space-time depending on variable coefficients and source term, which represents a model of a Brownian particle in a periodic potential. The Caputo derivative and the Riemann-Liouville derivative are considered in the temporal and spatial directions, respectively. The Riemann-Liouville derivative is approximated by the standard Grunwald approximation and the shifted Grunwald approximation. The stability and convergence of the numerical scheme are discussed. Finally, we provide a numerical example to test the theoretical analysis.
引用
收藏
页数:12
相关论文
共 17 条
  • [1] Analytical and Approximate Solution for Solving the Vibration String Equation with a Fractional Derivative
    Aleroev, Temirkhan S.
    Elsayed, Asmaa M.
    [J]. MATHEMATICS, 2020, 8 (07)
  • [2] Boundary value problems of fractional Fokker-Planck equations
    Aleroev, Temirkhan S.
    Aleroeva, Hedi T.
    Huang, Jianfei
    Tamm, Mikhail V.
    Tang, Yifa
    Zhao, Yue
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 959 - 969
  • [3] Finite Difference Method for Time-Space Fractional Advection-Diffusion Equations with Riesz Derivative
    Arshad, Sadia
    Baleanu, Dumitru
    Huang, Jianfei
    Al Qurashi, Maysaa Mohamed
    Tang, Yifa
    Zhao, Yue
    [J]. ENTROPY, 2018, 20 (05)
  • [4] FRACTIONAL ORDER STATE-EQUATIONS FOR THE CONTROL OF VISCOELASTICALLY DAMPED STRUCTURES
    BAGLEY, RL
    CALICO, RA
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1991, 14 (02) : 304 - 311
  • [5] Application of a fractional advection-dispersion equation
    Benson, DA
    Wheatcraft, SW
    Meerschaert, MM
    [J]. WATER RESOURCES RESEARCH, 2000, 36 (06) : 1403 - 1412
  • [6] Bu WP, 2012, COMM COM INF SC, V327, P95
  • [7] Bueno-Orovio A., 2013, 1335 OCCAM
  • [8] Numerical Scheme for Solving Time-Space Vibration String Equation of Fractional Derivative
    Elsayed, Asmaa M.
    Orlov, Viktor N.
    [J]. MATHEMATICS, 2020, 8 (07)
  • [9] New numerical simulation for fractional Benney-Lin equation arising in falling film problems using two novel techniques
    Gao, Wei
    Veeresha, Pundikala
    Prakasha, Doddabhadrappla Gowda
    Baskonus, Haci Mehmet
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (01) : 210 - 243
  • [10] Analytical and approximate solutions of Fractional Partial Differential-Algebraic Equations
    Gunerhan, Hatira
    Celik, Ercan
    [J]. APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2020, 5 (01) : 109 - 120