CytoTree: an R/Bioconductor package for analysis and visualization of flow and mass cytometry data

被引:21
作者
Dai, Yuting [1 ,2 ]
Xu, Aining [1 ,2 ]
Li, Jianfeng [1 ,2 ]
Wu, Liang [1 ,2 ]
Yu, Shanhe [1 ,2 ]
Chen, Jun [3 ,4 ]
Zhao, Weili [1 ,2 ]
Sun, Xiao-Jian [1 ,2 ]
Huang, Jinyan [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Ruijin Hosp, Natl Res Ctr Translat Med Shanghai, State Key Lab Med Genom,Shanghai Inst Hematol,Sch, 197 Ruijin Er Rd, Shanghai 200025, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, 197 Ruijin Er Rd, Shanghai 200025, Peoples R China
[3] Mayo Clin, Div Biomed Stat & Informat, Dept Hlth Sci Res, 200 1st St SW, Rochester, MN 55905 USA
[4] Mayo Clin, Ctr Individualized Med, 200 1st St SW, Rochester, MN 55905 USA
基金
中国国家自然科学基金;
关键词
Flow cytometry; Mass cytometry; Single-cell; Tree; Pseudotime; HIGH-DIMENSIONAL CYTOMETRY; SINGLE-CELL-DATA; CLUSTERING METHODS; EXPRESSION DATA; IDENTIFICATION; MAPS; TOOL;
D O I
10.1186/s12859-021-04054-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundThe rapidly increasing dimensionality and throughput of flow and mass cytometry data necessitate new bioinformatics tools for analysis and interpretation, and the recently emerging single-cell-based algorithms provide a powerful strategy to meet this challenge.ResultsHere, we present CytoTree, an R/Bioconductor package designed to analyze and interpret multidimensional flow and mass cytometry data. CytoTree provides multiple computational functionalities that integrate most of the commonly used techniques in unsupervised clustering and dimensionality reduction and, more importantly, support the construction of a tree-shaped trajectory based on the minimum spanning tree algorithm. A graph-based algorithm is also implemented to estimate the pseudotime and infer intermediate-state cells. We apply CytoTree to several examples of mass cytometry and time-course flow cytometry data on heterogeneity-based cytology and differentiation/reprogramming experiments to illustrate the practical utility achieved in a fast and convenient manner.ConclusionsCytoTree represents a versatile tool for analyzing multidimensional flow and mass cytometry data and to producing heuristic results for trajectory construction and pseudotime estimation in an integrated workflow.
引用
收藏
页数:20
相关论文
共 46 条
[1]   Rapid Cell Population Identification in Flow Cytometry Data [J].
Aghaeepour, Nima ;
Nikolic, Radina ;
Hoos, Holger H. ;
Brinkman, Ryan R. .
CYTOMETRY PART A, 2011, 79A (01) :6-13
[2]   viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia [J].
Amir, El-ad David ;
Davis, Kara L. ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Levine, Jacob H. ;
Bendall, Sean C. ;
Shenfeld, Daniel K. ;
Krishnaswamy, Smita ;
Nolan, Garry P. ;
Pe'er, Dana .
NATURE BIOTECHNOLOGY, 2013, 31 (06) :545-+
[3]   Dimensionality reduction for visualizing single-cell data using UMAP [J].
Becht, Etienne ;
McInnes, Leland ;
Healy, John ;
Dutertre, Charles-Antoine ;
Kwok, Immanuel W. H. ;
Ng, Lai Guan ;
Ginhoux, Florent ;
Newell, Evan W. .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :38-+
[4]   Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development [J].
Bendall, Sean C. ;
Davis, Kara L. ;
Amir, El-ad David ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Chen, Tiffany J. ;
Shenfeld, Daniel K. ;
Nolan, Garry P. ;
Pe'er, Dana .
CELL, 2014, 157 (03) :714-725
[5]   Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum [J].
Bendall, Sean C. ;
Simonds, Erin F. ;
Qiu, Peng ;
Amir, El-ad D. ;
Krutzik, Peter O. ;
Finck, Rachel ;
Bruggner, Robert V. ;
Melamed, Rachel ;
Trejo, Angelica ;
Ornatsky, Olga I. ;
Balderas, Robert S. ;
Plevritis, Sylvia K. ;
Sachs, Karen ;
Pe'er, Dana ;
Tanner, Scott D. ;
Nolan, Garry P. .
SCIENCE, 2011, 332 (6030) :687-696
[6]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[7]   The single-cell transcriptional landscape of mammalian organogenesis [J].
Cao, Junyue ;
Spielmann, Malte ;
Qiu, Xiaojie ;
Huang, Xingfan ;
Ibrahim, Daniel M. ;
Hill, Andrew J. ;
Zhang, Fan ;
Mundlos, Stefan ;
Christiansen, Lena ;
Steemers, Frank J. ;
Trapnell, Cole ;
Shendure, Jay .
NATURE, 2019, 566 (7745) :496-+
[8]   FlowCal: A User-Friendly, Open Source Software Tool for Automatically Converting Flow Cytometry Data from Arbitrary to Calibrated Units [J].
Castillo-Hair, Sebastian M. ;
Sexton, John T. ;
Landry, Brian P. ;
Olson, Evan J. ;
Igoshin, Oleg A. ;
Tabor, Jeffrey J. .
ACS SYNTHETIC BIOLOGY, 2016, 5 (07) :774-780
[9]   High-Parameter Single-Cell Analysis [J].
Chattopadhyay, Pratip K. ;
Winters, Aidan F. ;
Lomas, Woodrow E., III ;
Laino, Andressa S. ;
Woods, David M. .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 12, 2019, 12 :411-430
[10]   Cytofkit: A Bioconductor Package for an Integrated Mass Cytometry Data Analysis Pipeline [J].
Chen, Hao ;
Lau, Mai Chan ;
Wong, Michael Thomas ;
Newell, Evan W. ;
Poidinger, Michael ;
Chen, Jinmiao .
PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (09)