Facile Strategy to Low-Cost Synthesis of Hierarchically Porous, Active Carbon of High Graphitization for Energy Storage

被引:43
作者
Deng, Xiang [1 ]
Shi, Wenxiang [1 ]
Zhong, Yijun [3 ]
Zhou, Wei [1 ]
Liu, Meilin [2 ]
Shao, Zongping [1 ,3 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Jiangsu, Peoples R China
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] Curtin Univ, Dept Chem Engn, Perth, WA 6845, Australia
关键词
carbon; graphitization; electrode; supercapacitor; sodium-ion battery; SODIUM-ION BATTERIES; REDUCED GRAPHENE OXIDE; LITHIUM-ION; RAMAN-SPECTROSCOPY; PERFORMANCE SUPERCAPACITORS; CATALYTIC GRAPHITIZATION; ELECTRODE MATERIALS; CYCLING STABILITY; RATE CAPABILITY; ANODE;
D O I
10.1021/acsami.8b04733
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To achieve high energy/power output, long serving life, and low cost of carbon-based electrodes for energy storage, we have developed a unique synthesis method for the fabrication of hierarchically porous carbon of high graphitization (HPCHG), derived from pyrolysis of an iron-containing organometallic precursor in a molten ZnCl2 media at relatively low temperatures. The as-prepared HPCHG has a large specific surface area (>1200 m(2) g(-1)), abundant micro/mesopores, and plenty of surface defects. When tested in a supercapacitor (SC), the HPCHG electrode delivers 248 F g(-1) at 0.5 A g(-1) and a high capacitance retention of 52.4% (130 F g(-1)) at 50 A g(-1). When tested in a sodium-ion battery (SIB), the HPCHG electrode exhibits a reversible capacity of 322 mA h g(-1) at 100 mA while maintaining similar to 75% of the initial stable capacity after 2000 cycles with the applied current density as high as 5000 mA g(-1), implying that the HPCHG electrode is very promising for energy storage.
引用
收藏
页码:21573 / 21581
页数:9
相关论文
共 62 条
[1]   The preparation of active carbons from coal by chemical and physical activation [J].
Ahmadpour, A ;
Do, DD .
CARBON, 1996, 34 (04) :471-479
[2]   The preparation of activated carbon from macadamia nutshell by chemical activation [J].
Ahmadpour, A ;
Do, DD .
CARBON, 1997, 35 (12) :1723-1732
[3]  
[Anonymous], 2016, Nano Adv
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[6]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[7]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[8]   Synthesis of ZnO-carbon composites and imprinted carbon by the pyrolysis of ZnCl2-catalyzed furfuryl alcohol polymers [J].
Cesano, Federico ;
Scarano, Domenica ;
Bertarione, Serena ;
Bonino, Francesca ;
Damin, Alessandro ;
Bordiga, Silvia ;
Prestipino, Carmelo ;
Lamberti, Carlo ;
Zecchina, Adriano .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2008, 196 (2-3) :143-153
[9]   Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling [J].
Chen, Chaoji ;
Wen, Yanwei ;
Hu, Xianluo ;
Ji, Xiulei ;
Yan, Mengyu ;
Mai, Liqiang ;
Hu, Pei ;
Shan, Bin ;
Huang, Yunhui .
NATURE COMMUNICATIONS, 2015, 6
[10]   HEAT CONTENTS OF MOLTEN ZINC CHLORIDE + BROMIDE + MOLECULAR CONSTANTS OF GASES [J].
CUBICCIOTTI, D ;
EDING, H .
JOURNAL OF CHEMICAL PHYSICS, 1964, 40 (04) :978-&