Teichmuller spaces, ergodic theory and global Torelli theorem

被引:0
|
作者
Verbitsky, Misha
机构
来源
PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II | 2014年
关键词
Torelli theorem; hyperkahler manifold; moduli space; mapping class group; Teichmuller space; ergodicity; COUNTER-EXAMPLE; KAHLER CONE; MODULI; MONODROMY; MANIFOLDS; FLOWS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Teichmuller space Teich is a quotient of the space of all complex structures on a given manifold M by the connected components of the group of diffeomorphisms. The mapping class group G of M is the group of connected components of the diffeomorphism group. The moduli problems can be understood as statements about the G-action on Teich. I will describe the mapping class group and the Teichmuller space for a hyperkahler manifold. It turns out that this action is ergodic. We use the ergodicity to show that a hyperkahler manifold is never Kobayashi hyperbolic.
引用
收藏
页码:793 / 811
页数:19
相关论文
共 50 条