An Efficient Dynamic Background Subtraction Algorithm for Vehicle Detection Tracking System

被引:1
作者
Khilar, Rashmita [1 ]
Sahoo, Sarat Kumar [2 ]
Rani, C. [3 ]
Shanmugam, Prabhakar Karthikeyan [3 ]
机构
[1] Panimalar Engn Coll, Chennai, Tamil Nadu, India
[2] Parala Maharaja Engn Coll, Luhajhara, Odisha, India
[3] VIT Univ, Sch Elect Engn, Vellore, Tamil Nadu, India
来源
SOFT COMPUTING FOR PROBLEM SOLVING, SOCPROS 2018, VOL 1 | 2020年 / 1048卷
关键词
Background modeling; Texture; Color; LBP; TCO-DBS;
D O I
10.1007/978-981-15-0035-0_45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background subtraction is an important role in video surveillance system in ITS, yet in complex scenes, it is still a challenging problem; hence, it is required to model the background before subtraction. Various illumination changes and dynamic backgrounds form the major key aspects for background modeling. In this paper, an algorithm (TCO-DBS) is proposed to develop an efficient background subtraction framework to solve the above problems. Here, texture and color features are considered for background modeling, thereby separating the foreground and background video frames. The texture features mainly depend on scale values used, i.e., number of neighboring pixels used for describing local texture description. Among this, local binary pattern (LBP) is mostly used in computer vision applications. LBP texture features along with color feature give a promising result when compared to other methods.
引用
收藏
页码:551 / 562
页数:12
相关论文
共 20 条
  • [1] Guo ZH, 2010, IEEE IMAGE PROC, P285, DOI 10.1109/ICIP.2010.5652209
  • [2] A texture-based method for modeling the background and detecting moving objects
    Heikkilä, M
    Pietikäinen, M
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (04) : 657 - 662
  • [3] Iwasaki Y, 2006, ADVANCES IN COMPUTER, INFORMATION, AND SYSTEMS SCIENCES AND ENGINEERING, P93
  • [4] Jacques JCS, 2005, SIBGRAPI 2005: XVIII BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, CONFERENCE PROCEEDINGS, P189
  • [5] Real-time foreground-background segmentation using codebook model
    Kim, K
    Chalidabhongse, TH
    Harwood, D
    Davis, L
    [J]. REAL-TIME IMAGING, 2005, 11 (03) : 172 - 185
  • [6] Statistical modeling of complex backgrounds for foreground object detection
    Li, LY
    Huang, WM
    Gu, IYH
    Tian, Q
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (11) : 1459 - 1472
  • [7] Modeling Pixel Process with Scale Invariant Local Patterns for Background Subtraction in Complex Scenes
    Liao, Shengcai
    Zhao, Guoying
    Kellokumpu, Vili
    Pietikainen, Matti
    Li, Stan Z.
    [J]. 2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 1301 - 1306
  • [8] Mandal M, 2015, 2015 IEEE POWER, COMMUNICATION AND INFORMATION TECHNOLOGY CONFERENCE (PCITC-2015), P691, DOI 10.1109/PCITC.2015.7438085
  • [9] Foreground-Adaptive Background Subtraction
    McHugh, J. Mike
    Konrad, Janusz
    Saligrama, Venkatesh
    Jodoin, Pierre-Marc
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (05) : 390 - 393
  • [10] Niknejad HT, 2012, 2012 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), P766, DOI 10.1109/IVS.2012.6232284