Sperm epigenetics and influence of environmental factors

被引:226
作者
Donkin, Ida [1 ]
Barres, Romain [1 ]
机构
[1] Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Basic Metab Res, DK-2200 Copenhagen, Denmark
关键词
Sperm; Spermatozoa; Epigenetic; Epigenetic inheritance; Small RNA; DNA methylation; Histone; NON-CPG METHYLATION; DNA METHYLATION; TRANSGENERATIONAL INHERITANCE; IN-VITRO; RNA; CHROMATIN; DIET; GENOME; 5-METHYLCYTOSINE; FERTILIZATION;
D O I
10.1016/j.molmet.2018.02.006
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Developmental programming of the embryo is controlled by genetic information but also dictated by epigenetic information contained in spermatozoa. Lifestyle and environmental factors not only influence health in one individual but can also affect the phenotype of the following generations. This is mediated via epigenetic inheritance i.e., gametic transmission of environmentally-driven epigenetic information to the offspring. Evidence is accumulating that preconceptional exposure to certain lifestyle and environmental factors, such as diet, physical activity, and smoking, affects the phenotype of the next generation through remodeling of the epigenetic blueprint of spermatozoa. Scope of Review: This review will summarize current knowledge about the different epigenetic signals in sperm that are responsive to environmental and lifestyle factors and are capable of affecting embryonic development and the phenotype of the offspring later in life. Major conclusions: Like somatic cells, the epigenome of spermatozoa has proven to be dynamically reactive to a wide variety of environmental and lifestyle stressors. The functional consequence on embryogenesis and phenotype of the next generation remains largely unknown. However, strong evidence of environmentally-driven sperm-borne epigenetic factors, which are capable of altering the phenotype of the next generation, is emerging on a large scale. (C) 2018 The Authors. Published by Elsevier GmbH.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 104 条
[1]   Grandpaternal-induced transgenerational dietary reprogramming of the unfolded protein response in skeletal muscle [J].
Alm, Petter S. ;
Barbosa, Thais de Castro ;
Barres, Romain ;
Krook, Anna ;
Zierath, Juleen R. .
MOLECULAR METABOLISM, 2017, 6 (07) :621-630
[2]   Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences [J].
Arpanahi, Ali ;
Brinkworth, Martin ;
Iles, David ;
Krawetz, Stephen A. ;
Paradowska, Agnieszka ;
Platts, Adrian E. ;
Saida, Myriam ;
Steger, Klaus ;
Tedder, Philip ;
Miller, David .
GENOME RESEARCH, 2009, 19 (08) :1338-1349
[3]   piRNAs Can Trigger a Multigenerational Epigenetic Memory in the Germline of C. elegans [J].
Ashe, Alyson ;
Sapetschnig, Alexandra ;
Weick, Eva-Maria ;
Mitchell, Jacinth ;
Bagijn, Marloes P. ;
Cording, Amy C. ;
Doebley, Anna-Lisa ;
Goldstein, Leonard D. ;
Lehrbach, Nicolas J. ;
Le Pen, Jeremie ;
Pintacuda, Greta ;
Sakaguchi, Aisa ;
Sarkies, Peter ;
Ahmed, Shawn ;
Miska, Eric A. .
CELL, 2012, 150 (01) :88-99
[4]   High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring [J].
Barbosa, Thais de Castro ;
Ingerslev, Lars R. ;
Alm, Petter S. ;
Versteyhe, Soetkin ;
Massart, Julie ;
Rasmussen, Morten ;
Donkin, Ida ;
Sjogren, Rasmus ;
Mudry, Jonathan M. ;
Vetterli, Laurene ;
Gupta, Shashank ;
Krook, Anna ;
Zierath, Juleen R. ;
Barres, Romain .
MOLECULAR METABOLISM, 2016, 5 (03) :184-197
[5]   Histone Variant H2AL2 Guides Transition Protein-Dependent Protamine Assembly in Male Germ Cells [J].
Barral, Sophie ;
Morozumi, Yuichi ;
Tanaka, Hiroki ;
Montellier, Emilie ;
Govin, Jerome ;
de Dieuleveult, Maud ;
Charbonnier, Guillaume ;
Coute, Yohann ;
Puthier, Denis ;
Buchou, Thierry ;
Boussouar, Faycal ;
Urahama, Takashi ;
Fenaille, Francois ;
Curtet, Sandrine ;
Hery, Patrick ;
Fernandez-Nunez, Nicolas ;
Shiota, Hitoshi ;
Gerard, Matthieu ;
Rousseaux, Sophie ;
Kurumizaka, Hitoshi ;
Khochbin, Saadi .
MOLECULAR CELL, 2017, 66 (01) :89-+
[6]   Non-CpG Methylation of the PGC-1α Promoter through DNMT3B Controls Mitochondrial Density [J].
Barres, Romain ;
Osler, Megan E. ;
Yan, Jie ;
Rune, Anna ;
Fritz, Tomas ;
Caidahl, Kenneth ;
Krook, Anna ;
Zierath, Juleen R. .
CELL METABOLISM, 2009, 10 (03) :189-198
[7]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[8]   A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases (vol 15, pg 268, 2008) [J].
Benetti, Roberta ;
Gonzalo, Susana ;
Jaco, Isabel ;
Munoz, Purificacion ;
Gonzalez, Susana ;
Schoeftner, Stefan ;
Murchison, Elizabeth ;
Andl, Thomas ;
Chen, Taiping ;
Klatt, Peter ;
Li, En ;
Serrano, Manuel ;
Millar, Sarah ;
Hannon, Gregory ;
Blasco, Maria A. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2008, 15 (09) :998-998
[9]  
BIRD A, 1985, CELL, V40, P91, DOI 10.1016/0092-8674(85)90312-5
[10]   Methylation-induced repression - Belts, braces, and chromatin [J].
Bird, AP ;
Wolffe, AP .
CELL, 1999, 99 (05) :451-454