Sperm epigenetics and influence of environmental factors

被引:209
作者
Donkin, Ida [1 ]
Barres, Romain [1 ]
机构
[1] Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Basic Metab Res, DK-2200 Copenhagen, Denmark
来源
MOLECULAR METABOLISM | 2018年 / 14卷
关键词
Sperm; Spermatozoa; Epigenetic; Epigenetic inheritance; Small RNA; DNA methylation; Histone; NON-CPG METHYLATION; DNA METHYLATION; TRANSGENERATIONAL INHERITANCE; IN-VITRO; RNA; CHROMATIN; DIET; GENOME; 5-METHYLCYTOSINE; FERTILIZATION;
D O I
10.1016/j.molmet.2018.02.006
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Developmental programming of the embryo is controlled by genetic information but also dictated by epigenetic information contained in spermatozoa. Lifestyle and environmental factors not only influence health in one individual but can also affect the phenotype of the following generations. This is mediated via epigenetic inheritance i.e., gametic transmission of environmentally-driven epigenetic information to the offspring. Evidence is accumulating that preconceptional exposure to certain lifestyle and environmental factors, such as diet, physical activity, and smoking, affects the phenotype of the next generation through remodeling of the epigenetic blueprint of spermatozoa. Scope of Review: This review will summarize current knowledge about the different epigenetic signals in sperm that are responsive to environmental and lifestyle factors and are capable of affecting embryonic development and the phenotype of the offspring later in life. Major conclusions: Like somatic cells, the epigenome of spermatozoa has proven to be dynamically reactive to a wide variety of environmental and lifestyle stressors. The functional consequence on embryogenesis and phenotype of the next generation remains largely unknown. However, strong evidence of environmentally-driven sperm-borne epigenetic factors, which are capable of altering the phenotype of the next generation, is emerging on a large scale. (C) 2018 The Authors. Published by Elsevier GmbH.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 104 条
  • [1] Grandpaternal-induced transgenerational dietary reprogramming of the unfolded protein response in skeletal muscle
    Alm, Petter S.
    Barbosa, Thais de Castro
    Barres, Romain
    Krook, Anna
    Zierath, Juleen R.
    [J]. MOLECULAR METABOLISM, 2017, 6 (07): : 621 - 630
  • [2] Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences
    Arpanahi, Ali
    Brinkworth, Martin
    Iles, David
    Krawetz, Stephen A.
    Paradowska, Agnieszka
    Platts, Adrian E.
    Saida, Myriam
    Steger, Klaus
    Tedder, Philip
    Miller, David
    [J]. GENOME RESEARCH, 2009, 19 (08) : 1338 - 1349
  • [3] piRNAs Can Trigger a Multigenerational Epigenetic Memory in the Germline of C. elegans
    Ashe, Alyson
    Sapetschnig, Alexandra
    Weick, Eva-Maria
    Mitchell, Jacinth
    Bagijn, Marloes P.
    Cording, Amy C.
    Doebley, Anna-Lisa
    Goldstein, Leonard D.
    Lehrbach, Nicolas J.
    Le Pen, Jeremie
    Pintacuda, Greta
    Sakaguchi, Aisa
    Sarkies, Peter
    Ahmed, Shawn
    Miska, Eric A.
    [J]. CELL, 2012, 150 (01) : 88 - 99
  • [4] High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring
    Barbosa, Thais de Castro
    Ingerslev, Lars R.
    Alm, Petter S.
    Versteyhe, Soetkin
    Massart, Julie
    Rasmussen, Morten
    Donkin, Ida
    Sjogren, Rasmus
    Mudry, Jonathan M.
    Vetterli, Laurene
    Gupta, Shashank
    Krook, Anna
    Zierath, Juleen R.
    Barres, Romain
    [J]. MOLECULAR METABOLISM, 2016, 5 (03): : 184 - 197
  • [5] Histone Variant H2AL2 Guides Transition Protein-Dependent Protamine Assembly in Male Germ Cells
    Barral, Sophie
    Morozumi, Yuichi
    Tanaka, Hiroki
    Montellier, Emilie
    Govin, Jerome
    de Dieuleveult, Maud
    Charbonnier, Guillaume
    Coute, Yohann
    Puthier, Denis
    Buchou, Thierry
    Boussouar, Faycal
    Urahama, Takashi
    Fenaille, Francois
    Curtet, Sandrine
    Hery, Patrick
    Fernandez-Nunez, Nicolas
    Shiota, Hitoshi
    Gerard, Matthieu
    Rousseaux, Sophie
    Kurumizaka, Hitoshi
    Khochbin, Saadi
    [J]. MOLECULAR CELL, 2017, 66 (01) : 89 - +
  • [6] Non-CpG Methylation of the PGC-1α Promoter through DNMT3B Controls Mitochondrial Density
    Barres, Romain
    Osler, Megan E.
    Yan, Jie
    Rune, Anna
    Fritz, Tomas
    Caidahl, Kenneth
    Krook, Anna
    Zierath, Juleen R.
    [J]. CELL METABOLISM, 2009, 10 (03) : 189 - 198
  • [7] MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004)
    Bartel, David P.
    [J]. CELL, 2007, 131 (04) : 11 - 29
  • [8] A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases (vol 15, pg 268, 2008)
    Benetti, Roberta
    Gonzalo, Susana
    Jaco, Isabel
    Munoz, Purificacion
    Gonzalez, Susana
    Schoeftner, Stefan
    Murchison, Elizabeth
    Andl, Thomas
    Chen, Taiping
    Klatt, Peter
    Li, En
    Serrano, Manuel
    Millar, Sarah
    Hannon, Gregory
    Blasco, Maria A.
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2008, 15 (09) : 998 - 998
  • [9] BIRD A, 1985, CELL, V40, P91, DOI 10.1016/0092-8674(85)90312-5
  • [10] Methylation-induced repression - Belts, braces, and chromatin
    Bird, AP
    Wolffe, AP
    [J]. CELL, 1999, 99 (05) : 451 - 454