Bio-inspired Gait Imitation of Hexapod Robot Using Event-Based Vision Sensor and Spiking Neural Network

被引:2
作者
Ting, Justin [1 ]
Fang, Yan [1 ]
Lele, Ashwin [1 ]
Raychowdhury, Arijit [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
来源
2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2020年
关键词
robotic locomotion; gait imitation; spiking neural network; dynamic vision sensor; event-based visual processing; NEURONS;
D O I
10.1109/ijcnn48605.2020.9207224
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning how to walk is a sophisticated neurological task for most animals. In order to walk, the brain must synthesize multiple cortices, neural circuits, and diverse sensory inputs. Some animals, like humans, imitate surrounding individuals to speed up their learning. When humans watch their peers, visual data is processed through a visual cortex in the brain. This complex problem of imitation-based learning forms associations between visual data and muscle actuation through Central Pattern Generation (CPG). Reproducing this imitation phenomenon on low power, energy-constrained robots that are learning to walk remains challenging and unexplored. We propose a bio-inspired feed-forward approach based on neuromorphic computing and event-based vision to address the gait imitation problem. The proposed method trains a "student" hexapod to walk by watching an "expert" hexapod moving its legs. The student processes the flow of Dynamic Vision Sensor (DVS) data with a one layer Spiking Neural Network (SNN). The SNN of the student successfully imitates the expert within a small convergence time of ten iterations and exhibits energy efficiency at the sub-microjoule level.
引用
收藏
页数:7
相关论文
共 26 条
[1]  
Bouganis A., 2010, 2010 INT JOINT C NEU, P1, DOI 10.1109/IJCNN.2010.5596525
[2]   The Human Brain Project and neuromorphic computing [J].
Calimera, Andrea ;
Macii, Enrico ;
Poncino, Massimo .
FUNCTIONAL NEUROLOGY, 2013, 28 (03) :191-196
[3]   Spiking Deep Convolutional Neural Networks for Energy-Efficient Object Recognition [J].
Cao, Yongqiang ;
Chen, Yang ;
Khosla, Deepak .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 113 (01) :54-66
[4]   Loihi: A Neuromorphic Manycore Processor with On-Chip Learning [J].
Davies, Mike ;
Srinivasa, Narayan ;
Lin, Tsung-Han ;
Chinya, Gautham ;
Cao, Yongqiang ;
Choday, Sri Harsha ;
Dimou, Georgios ;
Joshi, Prasad ;
Imam, Nabil ;
Jain, Shweta ;
Liao, Yuyun ;
Lin, Chit-Kwan ;
Lines, Andrew ;
Liu, Ruokun ;
Mathaikutty, Deepak ;
Mccoy, Steve ;
Paul, Arnab ;
Tse, Jonathan ;
Venkataramanan, Guruguhanathan ;
Weng, Yi-Hsin ;
Wild, Andreas ;
Yang, Yoonseok ;
Wang, Hong .
IEEE MICRO, 2018, 38 (01) :82-99
[5]  
Diehl PU, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC)
[6]   Design of Spiking Central Pattern Generators for Multiple Locomotion Gaits in Hexapod Robots by Christiansen Grammar Evolution [J].
Espinal, Andres ;
Rostro-Gonzalez, Horacio ;
Carpio, Martin ;
Guerra-Hernandez, Erick I. ;
Ornelas-Rodriguez, Manuel ;
Sotelo-Figueroa, Marco .
FRONTIERS IN NEUROROBOTICS, 2016, 10
[7]   SPACE CODING BY PREMOTOR CORTEX [J].
FOGASSI, L ;
GALLESE, V ;
DIPELLEGRINO, G ;
FADIGA, L ;
GENTILUCCI, M ;
LUPPINO, G ;
MATELLI, M ;
PEDOTTI, A ;
RIZZOLATTI, G .
EXPERIMENTAL BRAIN RESEARCH, 1992, 89 (03) :686-690
[8]   A simple rule for quadrupedal gait generation determined by leg loading feedback: a modeling study [J].
Fukuoka, Yasuhiro ;
Habu, Yasushi ;
Fukui, Takahiro .
SCIENTIFIC REPORTS, 2015, 5
[9]   Event-Based Vision: A Survey [J].
Gallego, Guillermo ;
Delbruck, Tobi ;
Orchard, Garrick Michael ;
Bartolozzi, Chiara ;
Taba, Brian ;
Censi, Andrea ;
Leutenegger, Stefan ;
Davison, Andrew ;
Conradt, Jorg ;
Daniilidis, Kostas ;
Scaramuzza, Davide .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (01) :154-180
[10]   SPIKING NEURAL NETWORKS [J].
Ghosh-Dastidar, Samanwoy ;
Adeli, Hojjat .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2009, 19 (04) :295-308