Oscillation and asymptotic behavior for second-order nonlinear perturbed differential equations

被引:8
作者
Agarwal, RP
Wang, QR
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] Acad Sinica, Inst Math, Beijing 100080, Peoples R China
关键词
nonlinear; perturbed; oscillation; asymptotic behavior;
D O I
10.1016/j.mcm.2004.07.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, for all regular solutions of a class of second-order nonlinear perturbed differential equations, new oscillation criteria are established. Asymptotic behaviour for forced equations is also discussed. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1477 / 1490
页数:14
相关论文
共 14 条
[1]  
Agarwal R.P., 2003, OSCILLATION THEORY S
[2]  
AGARWAL RP, 2000, GEORGIAN MATH J, V7, P201
[3]  
AGARWAL SP, 2000, OSCILLATION THEORY D
[4]   INTEGRAL-AVERAGING TECHNIQUES FOR THE OSCILLATION OF 2ND-ORDER NONLINEAR DIFFERENTIAL-EQUATIONS [J].
GRACE, SR ;
LALLI, BS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 149 (01) :277-311
[6]  
Kamenev I. V., 1978, Mat. Zametki, V23, P249
[7]   OSCILLATION CRITERIA FOR 2ND-ORDER LINEAR-DIFFERENTIAL EQUATIONS [J].
LI, HJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 194 (01) :217-234
[8]   OSCILLATION THEOREMS FOR LINEAR-DIFFERENTIAL EQUATIONS OF 2ND ORDER [J].
PHILOS, CG .
ARCHIV DER MATHEMATIK, 1989, 53 (05) :482-492
[9]   Oscillation criteria for second order nonlinear perturbed differential equations [J].
Rogovchenko, YV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 215 (02) :334-357
[10]   Oscillatory behavior of solutions of certain second order nonlinear differential equations [J].
Wong, PJY ;
Agarwal, RP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 198 (02) :337-354