INFINITE TIME BLOW-UP FOR HALF-HARMONIC MAP FLOW FROM R INTO S1

被引:9
作者
Sire, Yannick [1 ]
Wei, Juncheng [2 ]
Zheng, Youquan [3 ]
机构
[1] Johns Hopkins Univ, Dept Math, 404 Krieger Hall,3400 N Charles St, Baltimore, MD 21218 USA
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[3] Tianjin Univ, Sch Math, Tianjin 300072, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
1/2-HARMONIC MAPS; HEAT-FLOW; REGULARITY; DYNAMICS; EXISTENCE; SURFACES; EQUATION;
D O I
10.1353/ajm.2021.0031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study infinite time blow-up phenomenon for the half-harmonic map flow {0, 1) {u(t) = -(-Delta)(1/2)u+(1/2 pi integral(R)vertical bar u(x) - u(s)(2)/vertical bar x - s vertical bar(2)ds)u in R x (0, infinity), u(., 0) = u(0 )in R, for a smooth function u: R x [0, infinity) -> S-1. Let q(1), ..., q(k) he distinct points in R, there exist a smooth initial datum u(0) and smooth functions xi(j)(t) -> q(j), 0 < mu(j) (t) -> 0, as t -> +infinity, j = 1 ,..., k, such that there exists a smooth solution u(q) of Problem (0.1) of the form u(q) = omega(infinity) + Sigma(k)(j=1) (omega(x-xi(j)(t)/mu(j)(t)) - omega(infinity)) + theta(x, t), where omega is the canonical least energy half-harmonic map, omega(infinity) = ((1)(0)), theta(x, t) -> 0 as t -> +infinity, uniformly away from the points q(j). In addition, the parameter functions mu(j)(t) decay to 0 exponentially.
引用
收藏
页码:1261 / 1335
页数:75
相关论文
共 43 条
  • [1] Blowup for fractional NLS
    Boulenger, Thomas
    Himmelsbach, Dominik
    Lenzmann, Enno
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (09) : 2569 - 2603
  • [2] The Influence of Fractional Diffusion in Fisher-KPP Equations
    Cabre, Xavier
    Roquejoffre, Jean-Michel
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 320 (03) : 679 - 722
  • [3] CHANG KC, 1992, J DIFFER GEOM, V36, P507
  • [4] EXISTENCE AND PARTIAL REGULARITY RESULTS FOR THE HEAT-FLOW FOR HARMONIC MAPS
    CHEN, YM
    STRUWE, M
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (01) : 83 - 103
  • [5] Green's function and infinite-time bubbling in the critical nonlinear heat equation
    Cortazar, Carmen
    del Pino, Manuel
    Musso, Monica
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (01) : 283 - 344
  • [6] Compactness and bubble analysis for 1/2-harmonic maps
    Da Lio, Francesca
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (01): : 201 - 224
  • [7] Fractional harmonic maps into manifolds in odd dimension n &gt; 1
    Da Lio, Francesca
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 48 (3-4) : 421 - 445
  • [8] Sub-criticality of non-local Schrodinger systems with antisymmetric potentials and applications to half-harmonic maps
    Da Lio, Francesca
    Riviere, Tristan
    [J]. ADVANCES IN MATHEMATICS, 2011, 227 (03) : 1300 - 1348
  • [9] THREE-TERM COMMUTATOR ESTIMATES AND THE REGULARITY OF 1/2-HARMONIC MAPS INTO SPHERES
    Da Lio, Francesca
    Riviere, Tristan
    [J]. ANALYSIS & PDE, 2011, 4 (01): : 149 - 190
  • [10] Type II ancient compact solutions to the Yamabe flow
    Daskalopoulos, Panagiota
    del Pino, Manuel
    Sesum, Natasa
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 738 : 1 - 71