Restrained domination polynomial in graphs

被引:4
作者
Kayathri, K. [1 ]
Kokilambal, G. [1 ]
机构
[1] Thiagarajar Coll, PG & Res Dept Math, Madurai 625009, Tamil Nadu, India
关键词
Domination; restrained domination; polynomial;
D O I
10.1080/09720529.2019.1681693
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph of order n and size m. A set S subset of V is a restrained dominating set if every vertex not in S is adjacent to a vertex in S and to a vertex in V - S. The restrained domination number of G, denoted by gamma(r)(G), is the smallest cardinality of a restrained dominating set of G. Let gamma(r)(G, i) denote the number of restrained dominating sets with cardinality i. Then the restrained domination polynomial(RDP) D-r(G, x) of G is defined as D-r(G, x) = Sigma(n)(i=1)d(r)(G,i)x(i). In this paper we determine the restrained domination polynomial for complete graphs, complete bipartite graphs, paths, cycles and products of K-2 with K-k.
引用
收藏
页码:761 / 775
页数:15
相关论文
共 10 条
  • [1] Alaeiyan M, 2011, DIG J NANOMATER BIOS, V6, P143
  • [2] Alikhani Saeid, 2008, GLOBAL J PURE APPL M, V4
  • [3] Askari B., 2011, ACTA U APULENSIS, P157
  • [4] Chaluvaraju B., 2016, J DISCRETE MATH SCI, V2, P423
  • [5] Dod Markus, 2015, THESIS
  • [6] Restrained domination in graphs
    Domke, GS
    Hattingh, JH
    Hedetniemi, ST
    Laskar, RC
    Markus, LR
    [J]. DISCRETE MATHEMATICS, 1999, 203 (1-3) : 61 - 69
  • [7] Haynes T.W., 1997, FUNDAMENTALS DOMINAT
  • [8] Haynes T. W., 1998, DOMINATION GRAPHS AD
  • [9] Majdeh D.A., 2019, J DISCRETE MATH SCI, P1
  • [10] Telle J.A., THESIS