Analysis of a finite difference scheme for a nonlinear Caputo fractional differential equation on an adaptive grid

被引:5
作者
Zhang, Yong [1 ]
Bao, Xiaobing [1 ]
Liu, Li-Bin [2 ]
Liang, Zhifang [2 ]
机构
[1] Chizhou Univ, Sch Big Data & Artificial Intelligence, Chizhou 247000, Anhui, Peoples R China
[2] Nanning Normal Univ, Sch Math & Stat, Nanning 530029, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 08期
基金
美国国家科学基金会;
关键词
Caputo fractional derivative; initial value problem; adaptive grid; mesh equidistribution; GRONWALL INEQUALITY; ERROR ANALYSIS; GRADED MESHES;
D O I
10.3934/math.2021500
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonlinear initial value problem whose differential operator is a Caputo derivative of order alpha with 0 < alpha < 1 is studied. By using the Riemann-Liouville fractional integral transformation, this problem is reformulated as a Volterra integral equation, which is discretized by using the right rectangle formula. Both a priori and an a posteriori error analysis are conducted. Based on the a priori error bound and mesh equidistribution principle, we show that there exists a nonuniform grid that gives first-order convergent result, which is robust with respect to alpha. Then an a posteriori error estimation is derived and used to design an adaptive grid generation algorithm. Numerical results complement the theoretical findings.
引用
收藏
页码:8611 / 8624
页数:14
相关论文
共 30 条
[1]   A posteriori error estimation in maximum norm for a two-point boundary value problem with a Riemann-Liouville fractional derivative [J].
Cen, Zhongdi ;
Liu, Li-Bin ;
Huang, Jian .
APPLIED MATHEMATICS LETTERS, 2020, 102
[2]   A posteriori error analysis for a fractional differential equation [J].
Cen, Zhongdi ;
Le, Anbo ;
Xu, Aimin .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (06) :1185-1195
[3]  
Debnath L., 2003, International Journal of Mathematics and Mathematical Sciences, V2003, P3413, DOI [10.1155/S0161171203301486, DOI 10.1155/S0161171203301486]
[4]   Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type [J].
Diethelm, Kai .
ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS: AN APPLICATION-ORIENTED EXPOSITION USING DIFFERENTIAL OPERATORS OF CAPUTO TYPE, 2010, 2004 :3-+
[5]   A Fitted Scheme for a Caputo Initial-Boundary Value Problem [J].
Gracia, J. L. ;
O'Riordan, E. ;
Stynes, M. .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (01) :583-609
[6]   Central difference approximation of convection in Caputo fractional derivative two-point boundary value problems [J].
Gracia, J. L. ;
Stynes, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 273 :103-115
[7]   Spectral collocation method for nonlinear Caputo fractional differential system [J].
Gu, Zhendong .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (05)
[8]   An efficient numerical method for a Riemann-Liouville two-point boundary value problem [J].
Huang, Jian ;
Cen, Zhongdi ;
Liu, Li-Bin ;
Zhao, Jialiang .
APPLIED MATHEMATICS LETTERS, 2020, 103
[9]   Fractional Differential Equations Based Modeling of Microbial Survival and Growth Curves: Model Development and Experimental Validation [J].
Kaur, A. ;
Takhar, P. S. ;
Smith, D. M. ;
Mann, J. E. ;
Brashears, M. M. .
JOURNAL OF FOOD SCIENCE, 2008, 73 (08) :E403-E414
[10]   ERROR ANALYSIS FOR A FRACTIONAL-DERIVATIVE PARABOLIC PROBLEM ON QUASI-GRADED MESHES USING BARRIER FUNCTIONS [J].
Kopteva, Natalia ;
Meng, Xiangyun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (02) :1217-1238