Investigations for mechanical properties of PLA-HAp-CS based functional prototypes

被引:15
作者
Ranjan, Nishant [1 ,2 ]
Singh, Rupinder [1 ]
Ahuja, I. P. S. [2 ]
机构
[1] Guru Nanak Dev Engn Coll, Prod Engn Dept, Ludhiana 141006, Punjab, India
[2] Punjabi Univ, Mech Engn Dept, Patiala 147002, Punjab, India
关键词
PLA; HAp; CS; TSE; FDM; biocompatible; reinforcement; scaffolds; HYDROXYAPATITE; COMPOSITES; POLYETHYLENE;
D O I
10.1016/j.matpr.2019.07.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper reports the investigations on blend of biocompatible and biodegradable polymer, poly lactic acid (PLA) reinforced with another biocompatible and bioactive polymer chitosan (CS) and ceramic material; hydroxyapatite (HAp) from material processing view point. The blend has been selected based upon melt flow index (MFI), flowability, thermal stability and mechanical testing. After ascertaining proportion/composition of PLA-HAp-CS on twin-screw extruder (TSE) feedstock filaments for fused deposition modelling (FDM) have been prepared. The fabricated feedstock filaments were used on FDM for printing of biomedical scaffolds (with input parameters as: layer thickness, deposition angle and infill density). The tensile and flexural tests of functional prototypes were performed on the universal tensile tester (UTT). Finally combined optimization was performed on tensile and flexural samples to determine the best setting of open-source FDM for printing of biomedical scaffolds. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2329 / 2334
页数:6
相关论文
共 16 条
[1]   Processing of hydroxyapatite reinforced ultrahigh molecular weight polyethylene for biomedical applications [J].
Fang, LM ;
Leng, Y ;
Gao, P .
BIOMATERIALS, 2005, 26 (17) :3471-3478
[2]  
KAWAMURA M, 1987, CLIN ORTHOP RELAT R, P281
[3]   PREPARATION OF HYDROXYAPATITE BY THE HYDROLYSIS OF BRUSHITE [J].
MONMA, H ;
KAMIYA, T .
JOURNAL OF MATERIALS SCIENCE, 1987, 22 (12) :4247-4250
[4]   Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes [J].
Oh, SH ;
Finones, RR ;
Daraio, C ;
Chen, LH ;
Jin, SH .
BIOMATERIALS, 2005, 26 (24) :4938-4943
[5]   Chemical synthesis of poly(lactic-co-glycolic acid)/hydroxyapatite composites for orthopaedic applications [J].
Petricca, SE ;
Marra, KG ;
Kumta, PN .
ACTA BIOMATERIALIA, 2006, 2 (03) :277-286
[6]  
Ranjan N., 2019, Addit. Manuf. Emerg. Mater., P325, DOI [10.1007/978- 3- 319- 91713- 9_11, DOI 10.1007/978-3-319-91713-9_11]
[7]   Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics [J].
Shikinami, Y ;
Okuno, M .
BIOMATERIALS, 1999, 20 (09) :859-877
[8]  
Singh R., 2017, REFERENCE MODULE MAT, DOI [10.1016/B978-0-12-803581-8.10167-5, DOI 10.1016/B978-0-12-803581-8.10167-5]
[9]  
Singh R., 2018, REFERENCE MODULE MAT, DOI [10.1016/B978-0-12-803581-8.10391-1, DOI 10.1016/B978-0-12-803581-8.10391-1]
[10]   Volume of distribution and clearance of peptide-based nanofiber after convection-enhanced delivery [J].
Singh, Ranjodh ;
Bellat, Vanessa ;
Wang, Melinda ;
Schweitzer, Melanie E. ;
Wu, Y. Linda ;
Tung, Ching-Hsuan ;
Souweidane, Mark M. ;
Law, Benedict .
JOURNAL OF NEUROSURGERY, 2018, 129 (01) :10-18