High-quality genome (re) assembly using chromosomal contact data

被引:99
作者
Marie-Nelly, Herve [1 ,2 ,3 ,4 ,5 ]
Marbouty, Martial [1 ,2 ]
Cournac, Axel [1 ,2 ]
Flot, Jean-Francois [6 ]
Liti, Gianni [7 ]
Parodi, Dante Poggi [5 ,8 ]
Syan, Sylvie [9 ]
Guillen, Nancy [9 ]
Margeot, Antoine [8 ]
Zimmer, Christophe [3 ,4 ]
Koszul, Romain [1 ,2 ]
机构
[1] Inst Pasteur, Dept Genomes & Genet, Grp Regulat Spatiale Genomes, F-75015 Paris, France
[2] CNRS, UMR 3525, F-75015 Paris, France
[3] Inst Pasteur, Unite Imagerie & Modelisat, F-75015 Paris, France
[4] CNRS, URA 2582, F-75015 Paris, France
[5] Univ Paris 06, Sorbonne Univ, IFD, F-75252 Paris, France
[6] Max Planck Inst Dynam & Self Org, Grp Biol Phys & Evolutionary Dynam, D-37073 Gottingen, Germany
[7] Univ Nice Sophia Antipolis, Inst Res Canc & Ageing Nice IRCAN, CNRS UMR 7284, INSERM U108, F-06107 Nice, France
[8] IFP Energies Nouvelles, F-92852 Rueil Malmaison, France
[9] Inst Pasteur, Unite Cell Biol Parasitism, F-75015 Paris, France
基金
欧洲研究理事会;
关键词
TRICHODERMA-REESEI; EVOLUTION; SEQUENCE; REARRANGEMENTS; SACCHAROMYCES; ORGANIZATION; PRINCIPLES; REGIONS; MODEL;
D O I
10.1038/ncomms6695
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Closing gaps in draft genome assemblies can be costly and time-consuming, and published genomes are therefore often left 'unfinished.' Here we show that genome-wide chromosome conformation capture (3C) data can be used to overcome these limitations, and present a computational approach rooted in polymer physics that determines the most likely genome structure using chromosomal contact data. This algorithm-named GRAAL-generates high-quality assemblies of genomes in which repeated and duplicated regions are accurately represented and offers a direct probabilistic interpretation of the computed structures. We first validated GRAAL on the reference genome of Saccharomyces cerevisiae, as well as other yeast isolates, where GRAAL recovered both known and unknown complex chromosomal structural variations. We then applied GRAAL to the finishing of the assembly of Trichoderma reesei and obtained a number of contigs congruent with the know karyotype of this species. Finally, we showed that GRAAL can accurately reconstruct human chromosomes from either fragments generated in silico or contigs obtained from de novo assembly. In all these applications, GRAAL compared favourably to recently published programmes implementing related approaches.
引用
收藏
页数:10
相关论文
共 46 条
[1]   APPLICATIONS OF NEXT-GENERATION SEQUENCING Genome structural variation discovery and genotyping [J].
Alkan, Can ;
Coe, Bradley P. ;
Eichler, Evan E. .
NATURE REVIEWS GENETICS, 2011, 12 (05) :363-375
[2]   Limitations of next-generation genome sequence assembly [J].
Alkan, Can ;
Sajjadian, Saba ;
Eichler, Evan E. .
NATURE METHODS, 2011, 8 (01) :61-65
[3]   Complexity of chromatin folding is captured by the strings and binders switch model [J].
Barbieri, Mariano ;
Chotalia, Mita ;
Fraser, James ;
Lavitas, Liron-Mark ;
Dostie, Josee ;
Pombo, Ana ;
Nicodemi, Mario .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (40) :16173-16178
[4]   Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species [J].
Bradnam, Keith R. ;
Fass, Joseph N. ;
Alexandrov, Anton ;
Baranay, Paul ;
Bechner, Michael ;
Birol, Inanc ;
Boisvert, Sebastien ;
Chapman, Jarrod A. ;
Chapuis, Guillaume ;
Chikhi, Rayan ;
Chitsaz, Hamidreza ;
Chou, Wen-Chi ;
Corbeil, Jacques ;
Del Fabbro, Cristian ;
Docking, T. Roderick ;
Durbin, Richard ;
Earl, Dent ;
Emrich, Scott ;
Fedotov, Pavel ;
Fonseca, Nuno A. ;
Ganapathy, Ganeshkumar ;
Gibbs, Richard A. ;
Gnerre, Sante ;
Godzaridis, Elenie ;
Goldstein, Steve ;
Haimel, Matthias ;
Hall, Giles ;
Haussler, David ;
Hiatt, Joseph B. ;
Ho, Isaac Y. ;
Howard, Jason ;
Hunt, Martin ;
Jackman, Shaun D. ;
Jaffe, David B. ;
Jarvis, Erich D. ;
Jiang, Huaiyang ;
Kazakov, Sergey ;
Kersey, Paul J. ;
Kitzman, Jacob O. ;
Knight, James R. ;
Koren, Sergey ;
Lam, Tak-Wah ;
Lavenier, Dominique ;
Laviolette, Francois ;
Li, Yingrui ;
Li, Zhenyu ;
Liu, Binghang ;
Liu, Yue ;
Luo, Ruibang ;
MacCallum, Iain .
GIGASCIENCE, 2013, 2
[5]   Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions [J].
Burton, Joshua N. ;
Adey, Andrew ;
Patwardhan, Rupali P. ;
Qiu, Ruolan ;
Kitzman, Jacob O. ;
Shendure, Jay .
NATURE BIOTECHNOLOGY, 2013, 31 (12) :1119-+
[6]   EVOLUTION OF THE DISPERSED SUC GENE FAMILY OF SACCHAROMYCES BY REARRANGEMENTS OF CHROMOSOME TELOMERES [J].
CARLSON, M ;
CELENZA, JL ;
ENG, FJ .
MOLECULAR AND CELLULAR BIOLOGY, 1985, 5 (11) :2894-2902
[7]   CHROMOSOMAL AND GENETIC-ANALYSIS OF THE ELECTROPHORETIC KARYOTYPE OF TRICHODERMA-REESEI - MAPPING OF THE CELLULASE AND XYLANASE GENES [J].
CARTER, GL ;
ALLISON, D ;
REY, MW ;
DUNNCOLEMAN, NS .
MOLECULAR MICROBIOLOGY, 1992, 6 (15) :2167-2174
[8]   Normalization of a chromosomal contact map [J].
Cournac, Axel ;
Marie-Nelly, Herve ;
Marbouty, Martial ;
Koszul, Romain ;
Mozziconacci, Julien .
BMC GENOMICS, 2012, 13
[9]   Assessing the complex architecture of polygenic traits in diverged yeast populations [J].
Cubillos, Francisco A. ;
Billi, Eleonora ;
Zorgo, Eniko ;
Parts, Leopold ;
Fargier, Patrick ;
Omholt, Stig ;
Blomberg, Anders ;
Warringer, Jonas ;
Louis, Edward J. ;
Liti, Gianni .
MOLECULAR ECOLOGY, 2011, 20 (07) :1401-1413
[10]   3C-based technologies to study the shape of the genome [J].
de Laat, Wouter ;
Dekker, Job .
METHODS, 2012, 58 (03) :189-191