FLIGHT DATA OF AIRPLANE FOR WIND FORECASTING

被引:0
作者
Sharma, Astha [1 ]
Hoque, Md Tamjidul [1 ,2 ]
Ioup, Elias [3 ]
Abdelguerfi, Mandi [1 ,2 ]
机构
[1] Univ New Orleans, Dept Comp Sci, New Orleans, LA 70148 USA
[2] Univ New Orleans, Canizaro Livingston Gulf States Ctr Environm Info, New Orleans, LA 70148 USA
[3] Naval Res Lab, Ctr Geospatial Sci, Stennis Space Ctr, MS USA
来源
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2020年
关键词
Machine Learning; Weather Forecasting; Genetic Algorithm; kNN imputation; Linear Regression; Extreme Gradient Boosting; Sliding Window;
D O I
10.1109/IGARSS39084.2020.9323718
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Understanding and predicting weather behavior is vital for informing pilots about changing flight conditions. This paper presents a new approach towards forecasting one component of weather information, wind speed, from data captured by airplanes in flight. We compare two datasets for prediction suitability, and a collinearity analysis between these datasets reveals a better model performance with smaller test error with one of them. We then apply machine learning and a genetic algorithm to process this data further and arrive at a competitive error rate. Finally, we create an offline software for wind prediction using the best performing classifier.
引用
收藏
页码:1853 / 1856
页数:4
相关论文
共 7 条
[1]  
Federal Aviation Administration, 2019, AIR TRAFF NUMB
[2]  
Federal Aviation Administration (FAA)/Aviation Supplies & Academics (ASA), 2010, 0045G FAAASA
[3]  
Kapoor A, 2014, PROCEEDINGS OF THE 13TH INTERNATIONAL SYMPOSIUM ON INFORMATION PROCESSING IN SENSOR NETWORKS (IPSN' 14), P25, DOI 10.1109/IPSN.2014.6846738
[4]  
National Oceanic and Atmospheric Administration, AIRCR DAT WEB
[5]  
National Oceanic and Atmospheric Administration, 2019, WIND TEMP FOR
[6]  
Roberts C., 2019, AM HAS GOTTEN BAD PR
[7]  
YANG M., 2018, ORNL DAAC