Prediction of biodiesel physico-chemical properties from its fatty acid composition using genetic programming

被引:59
作者
Alviso, Dario [1 ,2 ]
Artana, Guillermo [1 ]
Duriez, Thomas [1 ,3 ]
机构
[1] Univ Buenos Aires, Fac Ingn, Lab Fluidodinam, CONICET, Paseo Colon 850, Buenos Aires, DF, Argentina
[2] Univ Nacl Asuncion, Lab Mecan & Energia, Fac Ingn, Campus Univ, San Lorenzo, Paraguay
[3] Univ Marina Mercante, Av Rivadavia 2258, Buenos Aires, DF, Argentina
关键词
Biodiesel; Fatty acid; Genetic programming; Properties; Regression analysis; ARTIFICIAL NEURAL-NETWORKS; CETANE NUMBER; KINEMATIC VISCOSITY; FUEL PROPERTIES; METHYL-ESTERS; OXIDATIVE STABILITY; PHYSICAL-PROPERTIES; CHEMICAL-PROPERTIES; ENGINE PERFORMANCE; VEGETABLE-OILS;
D O I
10.1016/j.fuel.2019.116844
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents regression analysis of biodiesel physico-chemical properties as a function of fatty acid composition using an experimental database. The study is done by using 48 edible and non-edible oils-based biodiesel available data. Regression equations are presented as a function of fatty acid composition (saturated and unsaturated methyl esters). The physico-chemical properties studied are kinematic viscosity, flash point, cloud point, pour point (PP), cold filter plugging point, cetane (CN) and iodine numbers. The regression technique chosen to carry out this work is genetic programming (GP). Unlike multiple linear regression (MLR) strategies available in literature, GP provides generic, non-parametric regression among variables. For all properties analyzed, the performance of the regression is systematically better for GP than MLR. Indeed, the RSME related to the experimental database is lower for GP models, from approximate to 3% for CN to approximate to 55% for PP, in comparison to the best MLR model for each property. Particularly, most GP regression models reproduce correctly the dependence of properties on the saturated and unsaturated methyl esters.
引用
收藏
页数:12
相关论文
共 66 条
[1]   FLAMMABILITY PROPERTIES OF HYDROCARBON SOLUTIONS IN AIR [J].
AFFENS, WA ;
MCLAREN, GW .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1972, 17 (04) :482-&
[2]   Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines [J].
Agarwal, Avinash Kumar .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2007, 33 (03) :233-271
[3]   Prediction of Biodiesel Properties from Fatty Acid Composition using Linear Regression and ANN Techniques [J].
Agarwal, Madhu ;
Singh, Kailash ;
Chaurasia, S. .
INDIAN CHEMICAL ENGINEER, 2010, 52 (04) :347-361
[4]   Experimental and numerical studies of biodiesel combustion mechanisms using a laminar counterflow spray premixed flame [J].
Alviso, D. ;
Rolon, J. C. ;
Scouflaire, P. ;
Darabiha, N. .
FUEL, 2015, 153 :154-165
[5]   Chemical Kinetic Mechanism for Pyrolysis Bio-oil Surrogate [J].
Alviso, Dario ;
Duarte, Shirley ;
Alvarenga, Nelson ;
Rolon, Juan Carlos ;
Darabiha, Nasser .
ENERGY & FUELS, 2018, 32 (10) :10984-10998
[6]   Development of a diesel-biodiesel-ethanol combined chemical scheme and analysis of reactions pathways [J].
Alviso, Dario ;
Krauch, Federico ;
Roman, Rodney ;
Maldonado, Hernando ;
dos Santos, Rogerio Goncalves ;
Rolon, Juan Carlos ;
Darabiha, Nasser .
FUEL, 2017, 191 :411-426
[7]   Detailed physical properties prediction of pure methyl esters for biodiesel combustion modeling [J].
An, H. ;
Yang, W. M. ;
Maghbouli, A. ;
Chou, S. K. ;
Chua, K. J. .
APPLIED ENERGY, 2013, 102 :647-656
[8]  
[Anonymous], 2009, 14214 EN
[9]  
[Anonymous], ENV PROGR SUSTAINABL
[10]  
[Anonymous], 2012, D6751 ASTM