A quantitative improvement for Roth's theorem on arithmetic progressions

被引:54
作者
Bloom, T. F. [1 ]
机构
[1] Univ Bristol, Dept Math, Univ Walk, Bristol BS8 1TW, Avon, England
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2016年 / 93卷
基金
英国工程与自然科学研究理事会;
关键词
INTEGER SETS; SUMSETS;
D O I
10.1112/jlms/jdw010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We improve the quantitative estimate for Roth's theorem on three-term arithmetic progressions, showing that if A subset of {1,..., N} contains no non-trivial three-term arithmetic progressions, then vertical bar A vertical bar << N(log log N)(4)/log N. By the same method, we also improve the bounds in the analogous problem over F-q[t] and for the problem of finding long arithmetic progressions in a sumset.
引用
收藏
页码:643 / 663
页数:21
相关论文
共 19 条
[1]  
Bateman M, 2012, J AM MATH SOC, V25, P585
[3]   Translation invariant equations and the method of Sanders [J].
Bloom, Thomas F. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 :1050-1067
[4]   On triples in arithmetic progression [J].
Bourgain, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (05) :968-984
[5]   Roth's theorem on progressions revisited [J].
Bourgain, Jean .
JOURNAL D ANALYSE MATHEMATIQUE, 2008, 104 (1) :155-192
[6]   A polynomial bound in Freiman's theorem [J].
Chang, MC .
DUKE MATHEMATICAL JOURNAL, 2002, 113 (03) :399-419
[7]   Arithmetic Progressions in Sumsets and Lp-Almost-Periodicity [J].
Croot, Ernie ;
Laba, Izabella ;
Sisask, Olof .
COMBINATORICS PROBABILITY & COMPUTING, 2013, 22 (03) :351-365
[8]   Arithmetic progressions in sumsets [J].
Green, B .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (03) :584-597
[9]  
HEATHBROWN DR, 1987, J LOND MATH SOC, V35, P385
[10]   A GENERALIZATION OF ROTH'S THEOREM IN FUNCTION FIELDS [J].
Liu, Yu-Ru ;
Spencer, Craig V. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2009, 5 (07) :1149-1154