Physical meaning of the conserved quantities on anti-de Sitter geodesics

被引:5
作者
Cotaescu, Ion I. [1 ]
机构
[1] West Univ Timisoara, V Parvan Ave 4, RO-1900 Timisoara, Romania
关键词
HIDDEN SYMMETRIES;
D O I
10.1103/PhysRevD.95.104051
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The geodesic motion on anti-de Sitter spacetimes is studied, pointing out how the trajectories are determined by the ten independent conserved quantities associated with the specific SO(2,3) isometries of these manifolds. The new result is that there are two conserved SO(3) vectors which play the same role as the Runge-Lenz vector of the Kepler problem, determining the major and minor semiaxes of the ellipsoidal anti-de Sitter geodesics.
引用
收藏
页数:4
相关论文
共 22 条
[1]  
[Anonymous], 2009, Cambridge Monographs on Mathematical Physics
[2]   RELATIVISTIC SPACE FORMS [J].
CALABI, E ;
MARKUS, L .
ANNALS OF MATHEMATICS, 1962, 75 (01) :63-&
[3]  
Carifiena J. F., 2008, QUAL THEORY DYN SYST, V7, P87, DOI DOI 10.1007/S12346-008-0004-3
[4]  
Carter B., 1968, Communications in Mathematical Physics, V10, P280
[5]  
Cotaescu I. I., ARXIV170108499
[6]   External symmetry in general relativity [J].
Cotaescu, II .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (50) :9177-9192
[7]   Classical oscillators in general relativity [J].
Cotaescu, II ;
Vulcanov, ND .
EUROPHYSICS LETTERS, 2000, 49 (02) :156-161
[8]   The physical meaning of the de Sitter invariants [J].
Cotaescu, Ion I. .
GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (06) :1639-1656
[9]   CANONICAL FORMALISM FOR THE RELATIVISTIC HARMONIC-OSCILLATOR [J].
DULLEMOND, C ;
VANBEVEREN, E .
PHYSICAL REVIEW D, 1983, 28 (04) :1028-1032
[10]   THE HIDDEN SYMMETRIES OF MULTI-CENTRE METRICS [J].
GIBBONS, GW ;
RUBACK, PJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (02) :267-300