Position, spin, and orbital angular momentum of a relativistic electron

被引:32
作者
Bliokh, Konstantin Y. [1 ,2 ]
Dennis, Mark R. [3 ]
Nori, Franco [1 ,4 ]
机构
[1] RIKEN, Ctr Emergent Matter Sci, Wako, Saitama 3510198, Japan
[2] Australian Natl Univ, RSPE, Nonlinear Phys Ctr, Canberra, ACT, Australia
[3] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[4] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
日本学术振兴会; 澳大利亚研究理事会;
关键词
BERRY PHASE; THOMAS PRECESSION; DIRAC PARTICLES; VORTEX BEAMS; TRANSPORT; VORTICES; WAVES; LIGHT; FIELD;
D O I
10.1103/PhysRevA.96.023622
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Motivated by recent interest in relativistic electron vortex states, we revisit the spin and orbital angular momentum properties of Dirac electrons. These are uniquely determined by the choice of the position operator for a relativistic electron. We consider two main approaches discussed in the literature: (i) the projection of operators onto the positive-energy subspace, which removes the Zitterbewegung effects and correctly describes spin-orbit interaction effects, and (ii) the use of Newton-Wigner-Foldy-Wouthuysen operators based on the inverse Foldy-Wouthuysen transformation. We argue that the first approach [previously described in application to Dirac vortex beams in K. Y. Bliokh et al., Phys. Rev. Lett. 107, 174802 (2011)] has a more natural physical interpretation, including spin-orbit interactions and a nonsingular zero-mass limit, than the second one.
引用
收藏
页数:9
相关论文
共 64 条
[1]   ENERGY BANDS IN THE PRESENCE OF AN EXTERNAL FORCE FIELD .2. ANOMALOUS VELOCITIES [J].
ADAMS, EN ;
BLOUNT, EI .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1959, 10 (04) :286-303
[2]  
Andrews D. L., 2013, The Angular Momentum of Light
[3]  
Antognozzi M, 2016, NAT PHYS, V12, P731, DOI [10.1038/nphys3732, 10.1038/NPHYS3732]
[4]  
Bacry H., 1988, Localizability and Space in Quantum Physics
[5]   Relativistic Electron Vortices [J].
Barnett, Stephen M. .
PHYSICAL REVIEW LETTERS, 2017, 118 (11)
[6]   MAGNETIC-MOMENT OPERATOR OF THE RELATIVISTIC ELECTRON [J].
BARUT, AO ;
BRACKEN, AJ .
PHYSICAL REVIEW D, 1981, 24 (12) :3333-3334
[7]   Relativistic spin operators in various electromagnetic environments [J].
Bauke, Heiko ;
Ahrens, Sven ;
Keitel, Christoph H. ;
Grobe, Rainer .
PHYSICAL REVIEW A, 2014, 89 (05)
[8]   Spin Hall effect and Berry phase of spinning particles [J].
Bérard, A ;
Mohrbach, H .
PHYSICS LETTERS A, 2006, 352 (03) :190-195
[9]  
Berestetskii V. B., 1982, Quantum Electrodynamics, V2nd ed.