Revisiting the Riemann Zeta function at positive even integers

被引:2
作者
Alladi, Krishnaswami [1 ]
Defant, Colin [2 ]
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
Riemann zeta function; even positive integers; Euler's formula; Parseval identity; Bernoulli numbers;
D O I
10.1142/S1793042118501105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using Parseval's identity for the Fourier coefficients of xk, we provide a new proof that zeta(2k) = (-1)B-k+1(2k) (2 pi)(2k)/2(2k)!
引用
收藏
页码:1849 / 1856
页数:8
相关论文
共 7 条
[1]   A Simple Computation of ζ (2k) [J].
Ciaurri, Oscar ;
Navas, Luis M. ;
Ruiz, Francisco J. ;
Varona, Juan L. .
AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (05) :444-451
[2]   ANOTHER PROOF OF EULER'S FORMULA FOR ζ(2k) [J].
de Amo, E. ;
Diaz Carrillo, M. ;
Fernandez-Sanchez, J. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (04) :1441-1444
[3]  
Havil J, 2003, GAMMA: EXPLORING EULERS CONSTANT, P1
[4]   A RECURRENCE FORMULA FOR ZETA-(2N) [J].
KUO, HT .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (06) :573-574
[5]  
Navas LM., 2012, INT J MATH MATH SCI, V2012
[6]  
Rademacher H., 2012, TOPICS ANAL NUMBER T
[7]  
Rudin W., 1964, Principles of mathematical analysis