New stopping criterion for genetic algorithms

被引:46
作者
Aytug, H
Koehler, GJ
机构
[1] Univ Florida, Warrington Coll Business, Dept Informat & Decis Sci, Gainesville, FL 32611 USA
[2] UNCC, MIS OM Dept, Belk Coll Business Adm, Charlotte, NC 28223 USA
关键词
genetic algorithms; stopping condition; first passage times; Markov chains;
D O I
10.1016/S0377-2217(99)00321-5
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Genetic Algorithms have been successfully applied in a wide variety of problems. Although widely used, there are few theoretical guidelines for determining when to terminate the search. One result by Aytug and Koehler provides a loose bound on the number of GA generations needed to see all populations land hence, an optimal solution) with a specified probability. In this paper we derive a tighter bound. This new bound is on the number of iterations required to achieve a level of confidence to guarantee that a Genetic Algorithm has seen all strings land, hence,an optimal solution). (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:662 / 674
页数:13
相关论文
共 12 条
[1]  
[Anonymous], 1989, GENETIC ALGORITHM SE
[2]  
AYTUG H, 1996, EUR J OPER RES, V96, P195
[3]  
Aytug H., 1996, ORSA J COMPUTING, V8, P183
[4]  
GREENHALGH D, IN PRESS SIAM J COMP
[5]  
Johnson N.L., 1992, UNIVARIATE DISCRETE
[6]   General Cardinality Genetic Algorithms [J].
Koehler, Gary J. ;
Bhattacharyya, Siddhartha ;
Vose, Michael D. .
EVOLUTIONARY COMPUTATION, 1997, 5 (04) :439-459
[7]   New directions in genetic algorithm theory [J].
Koehler, GJ .
ANNALS OF OPERATIONS RESEARCH, 1997, 75 (0) :49-68
[8]  
MINC H., 1988, Nonnegative Matrices
[9]  
Nix A. E., 1992, Annals of Mathematics and Artificial Intelligence, V5, P79, DOI 10.1007/BF01530781
[10]  
VOSE MD, 1990, P IEEE WORKSH GEN AL