Graphite Conjugation Eliminates Redox Intermediates in Molecular Electrocatalysis

被引:55
作者
Jackson, Megan N. [1 ,2 ]
Kaminsky, Corey J. [1 ]
Oh, Seokjoon [1 ]
Melville, Jonathan F. [1 ]
Surendranath, Yogesh [1 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
COUPLED ELECTRON-TRANSFER; ELECTROCHEMICAL CO2 REDUCTION; HYDROGEN EVOLUTION; CONCERTED PROTON; OXYGEN REDUCTION; HYDRIDE COMPLEX; CARBON-MONOXIDE; RATE-CONSTANT; TRANSFERS; SELECTIVITY;
D O I
10.1021/jacs.9b04981
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The efficient interconversion of electrical and chemical energy requires the intimate coupling of electrons and small-molecule substrates at catalyst active sites. In molecular electrocatalysis, the molecule acts as a redox mediator which typically undergoes oxidation or reduction in a separate step from substrate activation. These mediated pathways introduce a high-energy intermediate, cap the driving force for substrate activation at the reduction potential of the molecule, and impede access to high rates at low overpotentials. Here we show that electronically coupling a molecular hydrogen evolution catalyst to a graphitic electrode eliminates stepwise pathways and forces concerted electron transfer and proton binding. Electrochemical and X-ray absorption spectroscopy data establish that hydrogen evolution catalysis at the graphite-conjugated Rh molecule proceeds without first reducing the metal center. These results have broad implications for the molecular-level design of energy conversion catalysts.
引用
收藏
页码:14160 / 14167
页数:8
相关论文
共 75 条
[61]   Concerted Proton-Electron Transfers: Fundamentals and Recent Developments [J].
Saveant, Jean-Michel .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 7, 2014, 7 :537-560
[62]  
Schmickler W, 2010, INTERFACIAL ELECTROCHEMISTRY, SECOND EDITION, P51, DOI 10.1007/978-3-642-04937-8_6
[63]   Competition between H and CO for Active Sites Governs Copper-Mediated Electrosynthesis of Hydrocarbon Fuels [J].
Schreier, Marcel ;
Yoon, Youngmin ;
Jackson, Megan N. ;
Surendranath, Yogesh .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (32) :10221-10225
[64]   ONE-ELECTRON AND 2-ELECTRON PATHWAYS IN THE ELECTROCATALYTIC REDUCTION OF CO2 BY FAC-RE(2,2'-BIPYRIDINE)(CO)3CL [J].
SULLIVAN, BP ;
BOLINGER, CM ;
CONRAD, D ;
VINING, WJ ;
MEYER, TJ .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1985, (20) :1414-1415
[65]   pH-Dependent Reactivity of a Water-Soluble Nickel Complex: Hydrogen Evolution vs Selective Electrochemical Hydride Generation [J].
Tsay, Charlene ;
Ceballos, Bianca M. ;
Yang, Jenny Y. .
ORGANOMETALLICS, 2019, 38 (06) :1286-1291
[66]   Electrocatalytic Hydrogen Evolution under Acidic Aqueous Conditions and Mechanistic Studies of a Highly Stable Molecular Catalyst [J].
Tsay, Charlene ;
Yang, Jenny Y. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (43) :14174-14177
[67]  
Wagner C.D., 2000, NIST Standarad Reference Database, V20
[68]   Development and understanding of cobaloxime activity through electrochemical molecular catalyst screening [J].
Wakerley, David W. ;
Reisner, Erwin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (12) :5739-5746
[69]   Thermochemistry of Proton-Coupled Electron Transfer Reagents and its Implications [J].
Warren, Jeffrey J. ;
Tronic, Tristan A. ;
Mayer, James M. .
CHEMICAL REVIEWS, 2010, 110 (12) :6961-7001
[70]   Proton-Coupled Electron Transfer [J].
Weinberg, David R. ;
Gagliardi, Christopher J. ;
Hull, Jonathan F. ;
Murphy, Christine Fecenko ;
Kent, Caleb A. ;
Westlake, Brittany C. ;
Paul, Amit ;
Ess, Daniel H. ;
McCafferty, Dewey Granville ;
Meyer, Thomas J. .
CHEMICAL REVIEWS, 2012, 112 (07) :4016-4093