Pulsed laser-induced heating of mineral phases: Implications for laser-induced breakdown spectroscopy combined with Raman spectroscopy

被引:33
作者
Fau, A. [1 ]
Beyssac, O. [1 ]
Gauthier, M. [1 ]
Meslin, P. Y. [2 ,3 ]
Cousin, A. [2 ,3 ]
Benzerara, K. [1 ]
Bernard, S. [1 ]
Boulliard, J. C. [1 ]
Gasnault, O. [2 ,3 ]
Forni, O. [2 ,3 ]
Wiens, R. C. [4 ]
Morand, M. [1 ]
Rosier, P. [1 ]
Garino, Y. [1 ]
Pont, S. [1 ]
Maurice, S. [2 ,3 ]
机构
[1] Sorbonne Univ, Museum Natl Hist Nat, CNRS, UMR 7590,Inst Mineral Phys Mat & Cosmochim, Paris, France
[2] Univ Toulouse, UPS OMP, Toulouse, France
[3] CNRS, UMR 5277, Inst Rech Astrophys & Planetol, Toulouse, France
[4] Los Alamos Natl Lab, Los Alamos, NM USA
关键词
SuperCam; Laser-induced breakdown spectroscopy; Raman spectroscopy; Pulsed laser heating; Time-resolved spectroscopy; CHEMCAM INSTRUMENT SUITE; GALE CRATER; INDUCED PLASMA; PHYSICAL-PROPERTIES; IRON-OXIDES; MARS; ROVER; METEORITE; FES2; ARCHITECTURE;
D O I
10.1016/j.sab.2019.105687
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy are complementary techniques providing respectively chemical and structural information on the sample target. These techniques are increasingly used in Earth and Planetary sciences, and often together. LIBS is locally destructive for the target, and the laser-induced effects due to LIBS laser shots on the structure and on the Raman fingerprint of a set of geological samples relevant to Mars exploration are here investigated by Raman spectroscopy and electron microscopy. Experiments show that the structure of samples with low optical absorption coefficients is preserved as well as the structural information carried by Raman spectra. By contrast, minerals with high optical absorption coefficient can be severely affected by LIBS laser shots with local amorphization, melting and/or phase transformation. Thermal modeling shows that the temperature can reach several thousands of degrees at the surface for such samples during a LIBS laser shot, but decreases rapidly with time and in space. In 2020, NASA Mars 2020 mission will send a rover equiped with a combined LIBS/Raman instrument for remote analysis (SuperCam) as well as proximity science instruments at fine scale for X-ray fluorescence called PIXL for Planetary Instrument for X-ray Lithochemistry, and deep UV Raman spectroscopy called SHERLOC for Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals. We discuss the implications of our results for the operation of these instruments and show that (i) the SuperCam analytical footprint for Raman spectroscopy is many times larger than the LIBS crater, minimizing any effects and (ii) SHERLOC and PIXL analysis may be affected if they analyze within a LIBS crater created by SuperCam LIBS.
引用
收藏
页数:14
相关论文
共 72 条
[1]   Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034 [J].
Agee, Carl B. ;
Wilson, Nicole V. ;
McCubbin, Francis M. ;
Ziegler, Karen ;
Polyak, Victor J. ;
Sharp, Zachary D. ;
Asmerom, Yemane ;
Nunn, Morgan H. ;
Shaheen, Robina ;
Thiemens, Mark H. ;
Steele, Andrew ;
Fogel, Marilyn L. ;
Bowden, Roxane ;
Glamoclija, Mihaela ;
Zhang, Zhisheng ;
Elardo, Stephen M. .
SCIENCE, 2013, 339 (6121) :780-785
[2]   Terrain physical properties derived from orbital data and the first 360 sols of Mars Science Laboratory Curiosity rover observations in Gale Crater [J].
Arvidson, R. E. ;
Bellutta, P. ;
Calef, F. ;
Fraeman, A. A. ;
Garvin, J. B. ;
Gasnault, O. ;
Grant, J. A. ;
Grotzinger, J. P. ;
Hamilton, V. E. ;
Heverly, M. ;
Iagnemma, K. A. ;
Johnson, J. R. ;
Lanza, N. ;
Le Mouelic, S. ;
Mangold, N. ;
Ming, D. W. ;
Mehta, M. ;
Morris, R. V. ;
Newsom, H. E. ;
Renno, N. ;
Rubin, D. ;
Schieber, J. ;
Sletten, R. ;
Stein, N. T. ;
Thuillier, F. ;
Vasavada, A. R. ;
Vizcaino, J. ;
Wiens, R. C. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2014, 119 (06) :1322-1344
[3]   HEATING OF SOLID TARGETS WITH LASER PULSES [J].
BECHTEL, JH .
JOURNAL OF APPLIED PHYSICS, 1975, 46 (04) :1585-1593
[4]   Study of the crystallographic architecture of corals at the nanoscale by scanning transmission X-ray microscopy and transmission electron microscopy [J].
Benzerara, Karim ;
Menguy, Nicolas ;
Obst, Martin ;
Stolarski, Jaroslaw ;
Mazur, Maciej ;
Tylisczak, Tolek ;
Brown, Gordon E., Jr. ;
Meibom, Anders .
ULTRAMICROSCOPY, 2011, 111 (08) :1268-1275
[5]   Multiscale characterization of pyritized plant tissues in blueschist facies metamorphic rocks [J].
Bernard, Sylvain ;
Benzerara, Karim ;
Beyssac, Olivier ;
Brown, Gordon E., Jr. .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2010, 74 (17) :5054-5068
[6]   Raman Mapping Using Advanced Line-Scanning Systems: Geological Applications [J].
Bernard, Sylvain ;
Beyssac, Olivier ;
Benzerara, Karim .
APPLIED SPECTROSCOPY, 2008, 62 (11) :1180-1188
[7]  
Beyssac O., 2017, NANOSECOND TIME RESO, P1545
[8]   Application of Raman spectroscopy to the study of graphitic carbons in the Earth Sciences [J].
Beyssac, Olivier ;
Lazzeri, Michele .
APPLICATIONS OF RAMAN SPECTROSCOPY TO EARTH SCIENCES AND CULTURAL HERITAGE, 2012, 12 :415-454
[9]   X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater [J].
Bish, D. L. ;
Blake, D. F. ;
Vaniman, D. T. ;
Chipera, S. J. ;
Morris, R. V. ;
Ming, D. W. ;
Treiman, A. H. ;
Sarrazin, P. ;
Morrison, S. M. ;
Downs, R. T. ;
Achilles, C. N. ;
Yen, A. S. ;
Bristow, T. F. ;
Crisp, J. A. ;
Morookian, J. M. ;
Farmer, J. D. ;
Rampe, E. B. ;
Stolper, E. M. ;
Spanovich, N. .
SCIENCE, 2013, 341 (6153)
[10]   Laser ablation for analytical sampling: what can we learn from modeling? [J].
Bogaerts, A ;
Chen, ZY ;
Gijbels, R ;
Vertes, A .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2003, 58 (11) :1867-1893