Embedded minimal surfaces in Rn

被引:18
作者
Alarcon, Antonio [1 ,2 ]
Forstneric, Franc [3 ,4 ]
Lopez, Francisco J. [5 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
[2] Univ Granada, Inst Matemat IEMath GR, E-18071 Granada, Spain
[3] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
[4] Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, Slovenia
[5] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
Riemann surfaces; Minimal surfaces; Conformal minimal embeddings; BORDERED RIEMANN SURFACES; MANIFOLDS; MAPPINGS; CURVES;
D O I
10.1007/s00209-015-1586-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that every conformal minimal immersion of an open Riemann surface into R-n for n >= 5 can be approximated uniformly on compacts by conformal minimal embeddings (see Theorem 1.1). Furthermore, we show that every open Riemann surface carries a proper conformal minimal embedding into R-5 (see Theorem 1.2). One of our main tools is a Mergelyan approximation theorem for conformal minimal immersions to R-n for any n >= 3 which is also proved in the paper (see Theorem 5.3).
引用
收藏
页码:1 / 24
页数:24
相关论文
共 35 条
[1]   TRANSVERSALITY IN MANIFOLDS OF MAPPINGS [J].
ABRAHAM, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1963, 69 (04) :470-&
[2]   PROPERNESS OF ASSOCIATED MINIMAL SURFACES [J].
Alarcon, Antonio ;
Lopez, Francisco J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (10) :5139-5154
[3]   Null curves and directed immersions of open Riemann surfaces [J].
Alarcon, Antonio ;
Forstneric, Franc .
INVENTIONES MATHEMATICAE, 2014, 196 (03) :733-771
[4]   Proper Holomorphic Embeddings of Riemann Surfaces with Arbitrary Topology into C2 [J].
Alarcon, Antonio ;
Lopez, Francisco J. .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (04) :1794-1805
[5]  
Alarcón A, 2013, CALC VAR PARTIAL DIF, V47, P227, DOI 10.1007/s00526-012-0517-0
[6]  
Alarcón A, 2012, J DIFFER GEOM, V90, P351
[7]  
Alarcon Antonio, J REINE ANG IN PRESS
[8]  
Bell S.R., 1990, ENCYCL MATH SCI, P1
[9]   MAPPINGS OF PARTIALLY ANALYTIC SPACES [J].
BISHOP, E .
AMERICAN JOURNAL OF MATHEMATICS, 1961, 83 (02) :209-&
[10]  
Cerne M, 2002, MATH RES LETT, V9, P683