In situ imaging of detergent-resistant membranes by atomic force microscopy

被引:50
|
作者
Giocondi, MC
Vié, V
Lesniewska, E
Goudonnet, JP
Le Grimellec, C
机构
[1] INSERM, U414, Ctr Biochim Struct, F-34090 Montpellier, France
[2] UFR Sci & Tech, CNRS, URA 5027, Phys Lab, F-21011 Dijon, France
关键词
surface topography; membrane domains; detergent; cytoskeleton; atomic force microscopy; CV-1; cells;
D O I
10.1006/jsbi.2000.4266
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Purified detergent-resistant membranes (DRMs) are powerful tools for the biochemical study of plasma membrane domains. To what extent these isolated DRMs correspond to native membrane domains remains, however, a matter of debate. The most immediate question to be answered concerns the in situ size range of DRMs, a determination that escapes classical microscopy techniques. Tn this study we show that in situ three dimensional images of a material as fragile as Triton X-100-treated cells can be obtained, in buffer, by tapping mode atomic force microscopy. These images establish that, prior to the isolation procedure, the detergent plasma membrane fragments form domains whose size frequently exceeds 15-20 mu m(2). This DRMs size range is about 1 order of magnitude higher than that estimated for the larger microdomains of living cells, which strongly suggests that membrane microdomains rearrange into larger DRMs during Triton X-100 treatment. Concomitantly, the images also reveal the presence of the cytoskeleton, which is resistant to detergent extraction, and suggest that, in situ, DRMs are associated with the membrane cytoskeleton. (C) 2000 Academic Press.
引用
收藏
页码:38 / 43
页数:6
相关论文
共 50 条
  • [31] Identification and ultrastructural imaging of photodynamic therapy-induced microfilaments by atomic force microscopy
    Jung, Se-Hui
    Park, Jin-Young
    Yoo, Je-Ok
    Shin, Incheol
    Kim, Young-Myeong
    Ha, Kwon-Soo
    ULTRAMICROSCOPY, 2009, 109 (12) : 1428 - 1434
  • [32] Atomic force microscopy for ultrafiltration membrane imaging
    Centoni, SA
    Vanasupa, LS
    Tong, PS
    SCANNING, 1997, 19 (04) : 281 - 285
  • [33] Phase imaging with intermodulation atomic force microscopy
    Platz, Daniel
    Tholen, Erik A.
    Hutter, Carsten
    von Bieren, Arndt C.
    Haviland, David B.
    ULTRAMICROSCOPY, 2010, 110 (06) : 573 - 577
  • [34] Adhesion artefacts in atomic force microscopy imaging
    Paredes, JI
    Martínez-Alonso, A
    Tascón, JMD
    JOURNAL OF MICROSCOPY, 2000, 200 : 109 - 113
  • [35] Characterisation of nanofiltration membranes using atomic force microscopy
    Hilal, N
    Al-Zoubi, H
    Darwish, NA
    Mohammad, AW
    DESALINATION, 2005, 177 (1-3) : 187 - 199
  • [36] Cationic peptide-induced remodelling of model membranes:: Direct visualization by in situ atomic force microscopy
    Shaw, James E.
    Epand, Raquel F.
    Hsu, Jenny C. Y.
    Mo, Gary C. H.
    Epand, Richard M.
    Yip, Christopher M.
    JOURNAL OF STRUCTURAL BIOLOGY, 2008, 162 (01) : 121 - 138
  • [37] Epithelial sodium channel activity in detergent-resistant membrane microdomains
    Shlyonsky, VG
    Mies, F
    Sariban-Sohraby, S
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2003, 284 (01) : F182 - F188
  • [38] Lidocaine effect on flotillin-2 distribution in detergent-resistant membranes of equine jejunal smooth muscle in vitro
    Tappenbeck, Karen
    Schmidt, Sonja
    Feige, Karsten
    Naim, Hassan Y.
    Huber, Korinna
    VETERINARY JOURNAL, 2014, 200 (02) : 325 - 327
  • [39] Surface nanoscale imaging of collagen thin films by Atomic Force Microscopy
    Stylianou, Andreas
    Yova, Dido
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2013, 33 (05): : 2947 - 2957
  • [40] Determination of the hydrophilic character of membranes by pulsed force mode atomic force microscopy
    Meincken, M
    Roux, SP
    Jacobs, EP
    APPLIED SURFACE SCIENCE, 2005, 252 (05) : 1772 - 1779