Pointwise approximation by the modified Szasz-Mirakyan operators

被引:0
|
作者
Zeng, Xiao-Ming [1 ]
Chen, X. [1 ]
机构
[1] Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China
关键词
rate of convergence; functions of bounded variation; class of functions; modified Szasz-Mirakyan operators; Lebesgue-Stieltjes integral;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we obtain an estimate on the rate of convergence of modified Szasz-Mirakyan operators for bounded functions satisfying certain growth condition. In the case of functions of bounded variation our result is better than the known results due to Sahai and Prasad (1993, Publ. Inst. Math. (Beograd) (N.S.) 53, 73-80) and Gupta and Pant (1999, J. Math. Anal. Appl. 233, 476-483). More important, by means of new metric form, our result successfully deals with the pointwise approximation of more general class of functions than the class of functions of bounded variation considered in the references as mentioned above.
引用
收藏
页码:421 / 429
页数:9
相关论文
共 50 条
  • [1] Approximation properties of modified Szasz-Mirakyan operators in polynomial weighted space
    Patel, Prashantkumar
    Mishra, Vishnu Narayan
    Orkcu, Mediha
    COGENT MATHEMATICS, 2015, 2
  • [2] Approximation on a class of Szasz-Mirakyan operators via second kind of beta operators
    Nasiruzzaman, M.
    Rao, Nadeem
    Srivastava, Anshul
    Kumar, Ravi
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [3] Some properties of modified Szasz-Mirakyan operators in polynomial spaces via the power summability method
    Braha, Naim L.
    JOURNAL OF APPLIED ANALYSIS, 2020, 26 (01) : 79 - 90
  • [4] Generalized Szasz-Mirakyan operators involving Brenke type polynomials
    Khatri, Kejal
    Mishra, Vishnu Narayan
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 324 : 228 - 238
  • [5] ON STANCU TYPE GENERALIZATION OF (p; q)-SZASZ-MIRAKYAN KANTOROVICH TYPE OPERATORS
    Mishra, Vishnu Narayan
    Devdhara, Ankita R.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2018, 36 (3-4): : 285 - 299
  • [6] Approximation by Szasz-Mirakyan-Baskakov-Stancu operators
    Mishra, Vishnu Narayan
    Sharma, Preeti
    AFRIKA MATEMATIKA, 2015, 26 (7-8) : 1313 - 1327
  • [7] Approximation properties of modified (p, q)-Szasz-Mirakyan-Kantorovich operators
    Zheng, Zhongbin
    Fang, Jinwu
    Cheng, Wentao
    Guo, Zhidong
    Zhou, Xiaoling
    AIMS MATHEMATICS, 2020, 5 (05): : 4959 - 4973
  • [8] SOME PROPERTIES OF NEW MODIFIED SZASZ-MIRAKYAN OPERATORS IN POLYNOMIAL WEIGHT SPACES VIA POWER SUMMABILITY METHODS
    Braha, Naim L.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 10 (03): : 53 - 65
  • [9] Rate of Approximation for Szasz-Mirakyan-Stancu-Durrmeyer Operators
    Govil, N. K.
    Gupta, Vijay
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2012, 33 (03) : 249 - 254
  • [10] Rate of convergence in simultaneous approximation for Szasz-Mirakyan-Durrmeyer operators
    Gupta, Vijay
    Noor, Muhammad Aslam
    Beniwal, Man Singh
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) : 964 - 970