Mixed finite elements on sparse grids

被引:1
作者
Gradinaru, V [1 ]
Hiptmair, R [1 ]
机构
[1] Univ Tubingen, Sonderforsch Bereich 382, D-72076 Tubingen, Germany
关键词
D O I
10.1007/s002110100382
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper generalizes the idea of approximation on sparse grids to discrete differential forms that include H(div; Omega)- and H(curl; Omega)conforming mixed finite element spaces as special cases. We elaborate on the construction of the spaces, introduce suitable nodal interpolation operators on sparse grids and establish. their approximation properties. We discuss how nodal interpolation operators can be approximated. The stability of H(div; Omega)-conforming finite elements on sparse grids, when used to approximate second order elliptic problems in mixed formulation, is investigated both theoretically and in numerical experiments.
引用
收藏
页码:471 / 495
页数:25
相关论文
共 37 条
[1]   The solution of multidimensional real Helmholtz equations on sparse grids [J].
Balder, R ;
Zenger, C .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (03) :631-646
[2]  
BALDER R, 1994, INT C COMP METH WAT, V10, P1383
[3]   Computational models of electromagnetic resonators: Analysis of edge element approximation [J].
Boffi, D ;
Fernandes, P ;
Gastaldi, L ;
Perugia, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (04) :1264-1290
[4]  
Bossavit A., 1992, MECCANICA, V27, P3
[5]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[6]  
BUNGARTZ H, 1991, ITERATIVE METHODS LI, P293
[7]  
BUNGARTZ H, 1992, THESIS TU MUNCHEN
[8]  
Bungartz Hans-Joachim, 1998, FINITE ELEMENTS HIGH
[9]  
BUNGARTZ HJ, 1998, LECT NOTES COMPUTATI, V3, P45
[10]  
Cartan H., 1967, FORMES DIFFERENTIELL