Experimental investigation of circular submerged jet impingement heat transfer with mixed molten salt

被引:5
|
作者
Wang, Bingtao [1 ]
Chen, Yongchang [1 ]
Cai, Jianbo [1 ]
Zhao, Jinlong [1 ]
Ma, Chongfang [1 ]
机构
[1] Beijing Univ Technol, Coll Environm & Energy Engn, Minist Educ, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Mixed molten salt; Submerged jet impingement; Heat transfer enhancement; LOW-MELTING POINT; LIQUID JET; SURFACE; POWER;
D O I
10.1016/j.expthermflusci.2018.04.030
中图分类号
O414.1 [热力学];
学科分类号
摘要
In order to investigate the heat transfer characteristics of mixed molten salt, an experimental setup for the submerged jet impingement has been established in this paper. Firstly, an experimental investigation on heat transfer of submerged jet impingement with water as working fluid was carried out to verify reliability of experimental method. A good consistence was found between experimental results and those classical correlations from references for stagnation heat transfer, which indicate the reliability and accuracy of experimental method. On the basic of ensuring the reliability of experiment, a series of studies on jet impingement experiments were carried out with new mixed molten salt. The results indicated that effect of submerged jet impingement heat transfer enhanced gradually with the increase Reynolds number and the heat transfer characteristics at the stagnation are analogous with the water in the scope of experimental investigations. Further, a correlation about quaternary mixed molten salt was proposed based on experimental data. At same Reynolds number, the Nusselt number of mixed molten salt is obviously higher than that of water at stagnation zone because of its higher Prandtl number and becomes lower than water at larger radial distance due to its higher viscosity. The results indicated that thermophysical properties of working fluid have an enormous influence on the Heat transfer performance. The experimental results in this paper provide a necessary technical guarantee for the study of heat transfer of the high temperature fluid
引用
收藏
页码:30 / 37
页数:8
相关论文
共 50 条
  • [21] Experimental investigation on impingement of a submerged circular water jet at varying impinging angles and Reynolds numbers
    Wang, Chuan
    Wang, Xikun
    Shi, Weidong
    Lu, Weigang
    Tan, Soon Keat
    Zhou, Ling
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2017, 89 : 189 - 198
  • [22] Heat transfer investigation with multiple jet impingement
    Murthy N.
    Naveenkumar B.K.
    Murthy, Niranjan (niranjanmurthy6808@gmail.com), 1600, MechAero Found. for Techn. Res. and Educ. Excellence (12): : 303 - 305
  • [23] Experimental investigation on the flow regime and impingement heat transfer of dual synthetic jet
    Deng, Xiong
    Luo, Zhen-bing
    Xia, Zhi-xun
    Gong, Wei-jie
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2019, 145
  • [24] Experimental investigation on the ice melting heat transfer with a steam jet impingement method
    Ji, Wen-Tao
    Lu, Xiao-Dong
    Chen, Li
    Zhang, Yi-Wei
    Tao, Wen-Quan
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2020, 118
  • [25] Experimental and numerical investigation of heat transfer characteristics of jet impingement on a flat plate
    Issac, Joseph
    Singh, Dushyant
    Kango, Saurabh
    HEAT AND MASS TRANSFER, 2020, 56 (02) : 531 - 546
  • [26] Experimental and numerical investigation on flow and heat transfer of impingement jet cooling of kerosene
    Du, Mengmeng
    Zhong, Fengquan
    Xing, Yunfei
    Zhang, Xinyu
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2020, 116
  • [27] Experimental and numerical investigation of heat transfer characteristics of jet impingement on a flat plate
    Joseph Issac
    Dushyant Singh
    Saurabh Kango
    Heat and Mass Transfer, 2020, 56 : 531 - 546
  • [28] Influence of nozzle profile on submerged pipe jet impingement heat transfer
    Srivastav, Ayushman
    Maithani, Rajesh
    Sharma, Sachin
    EXPERIMENTAL HEAT TRANSFER, 2024,
  • [29] A numerical study of impingement heat transfer in a confined circular jet
    In Gyu Park
    Bock Choon Pak
    Young I. Cho
    KSME International Journal, 1997, 11 : 348 - 358
  • [30] An experimental heat transfer investigation of an impingement jet array with turbulators on both target plate and impingement plate
    Chen, Lingling
    Brakmann, Robin G.
    Weigand, Bernhard
    Poser, Rico
    APPLIED THERMAL ENGINEERING, 2020, 166