All-Optical Phase Recovery: Diffractive Computing for Quantitative Phase Imaging

被引:70
作者
Mengu, Deniz [1 ,2 ,3 ]
Ozcan, Aydogan [1 ,2 ,3 ]
机构
[1] Univ Calif Los Angeles UCLA, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles UCLA, Dept Bioengn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles UCLA, Calif NanoSyst Inst CNSI, Los Angeles, CA 90095 USA
关键词
diffractive optical networks; deep learning; holography; light-matter interaction; optical computing; optical machine learning; quantitative phase imaging (QPI); DIGITAL HOLOGRAPHIC MICROSCOPY; DYNAMICS; CANCER; CELLS; FIELD; INTERFEROMETRY; INTENSITY; NETWORK;
D O I
10.1002/adom.202200281
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantitative phase imaging (QPI) is a label-free computational imaging technique that provides optical path length information of specimens. In modern implementations, the quantitative phase image of an object is reconstructed digitally through numerical methods running in a computer, often using iterative algorithms. Here, a diffractive QPI network that can perform all-optical phase recovery is demonstrated, and the quantitative phase image of an object is synthesized by converting the input phase information of a scene into intensity variations at the output plane. A diffractive QPI network is a specialized all-optical processor designed to perform a quantitative phase-to-intensity transformation through passive diffractive surfaces that are spatially engineered using deep learning and image data. Forming a compact, all-optical network that axially extends only approximate to 200-300 lambda, where lambda is the illumination wavelength, this framework can replace traditional QPI systems and related digital computational burden with a set of passive transmissive layers. All-optical diffractive QPI networks can potentially enable power-efficient, high frame-rate, and compact phase imaging systems that might be useful for various applications, including, e.g., microscopy and sensing.
引用
收藏
页数:12
相关论文
共 74 条
[1]   On the use of deep learning for computational imaging [J].
Barbastathis, George ;
Ozcan, Aydogan ;
Situ, Guohai .
OPTICA, 2019, 6 (08) :921-943
[2]   Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells [J].
Bon, Pierre ;
Maucort, Guillaume ;
Wattellier, Benoit ;
Monneret, Serge .
OPTICS EXPRESS, 2009, 17 (15) :13080-13094
[3]   Diffractive Deep Neural Networks at Visible Wavelengths [J].
Chen, Hang ;
Feng, Jianan ;
Jiang, Minwei ;
Wang, Yiqun ;
Lin, Jie ;
Tan, Jiubin ;
Jin, Peng .
ENGINEERING, 2021, 7 (10) :1483-1491
[4]  
Chrabaszcz Patryk, 2017, ARXIV170708819 CS
[5]  
Cotte Y, 2013, NAT PHOTONICS, V7, P113, DOI [10.1038/nphoton.2012.329, 10.1038/NPHOTON.2012.329]
[6]   Digital holography for quantitative phase-contrast imaging [J].
Cuche, E ;
Bevilacqua, F ;
Depeursinge, C .
OPTICS LETTERS, 1999, 24 (05) :291-293
[7]   Diabetes screening by telecentric digital holographic microscopy [J].
Doblas, A. ;
Roche, E. ;
Ampudia-Blasco, F. J. . ;
Martinez-Corral, M. ;
Saavedra, G. ;
Garcia-Sucerquia, J. . .
JOURNAL OF MICROSCOPY, 2016, 261 (03) :285-290
[8]   Shift-variant digital holographic microscopy: inaccuracies in quantitative phase imaging [J].
Doblas, Ana ;
Sanchez-Ortiga, Emilio ;
Martinez-Corral, Manuel ;
Saavedra, Genaro ;
Andres, Pedro ;
Garcia-Sucerquia, Jorge .
OPTICS LETTERS, 2013, 38 (08) :1352-1354
[9]  
DUNN GA, 1995, J CELL SCI, V108, P1239
[10]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+