Radiomic analysis of contrast-enhanced ultrasound data

被引:29
作者
Theek, Benjamin [1 ,2 ]
Opacic, Tatjana [1 ]
Magnuska, Zuzanna [1 ]
Lammers, Twan [1 ,2 ]
Kiessling, Fabian [1 ,2 ]
机构
[1] RWTH Aachen Univ Clin, Ctr Biohybrid Med Syst, Inst Expt Mol Imaging, Forckenbeckstr 55, D-52074 Aachen, Germany
[2] RWTH Aachen Univ Clin, Comprehens Diagnost Ctr Aache, Pauwelsstr 30, D-52074 Aachen, Germany
基金
欧洲研究理事会;
关键词
TEXTURE ANALYSIS; THYROID-NODULES; TUMOR RESPONSE; CANCER; FLOW; HETEROGENEITY; MICROBUBBLES; ARCHITECTURE; INFORMATION; FEATURES;
D O I
10.1038/s41598-018-29653-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Radiomics describes the use radiological data in a quantitative manner to establish correlations in between imaging biomarkers and clinical outcomes to improve disease diagnosis, treatment monitoring and prediction of therapy responses. In this study, we evaluated whether a radiomic analysis on contrast-enhanced ultrasound (CEUS) data allows to automatically differentiate three xenograft mouse tumour models. Next to conventional imaging biomarker classes, i.e. intensity-based, textural, and wavelet-based features, we included biomarkers describing morphological and functional characteristics of the tumour vasculature. In total, 235 imaging biomarkers were extracted and evaluated. Dedicated feature selection allowed us to identify user-independent and stable imaging biomarkers for each imaging biomarker class. The selected radiomic signature, composed of median image intensity, energy of grey-level co-occurrence matrix, vessel network length, and run length nonuniformity of the grey-level run length matrix from the diagonal details, was used to train a linear support vector machine (SVM) to classify tumour phenotypes. The model was trained by using a four-fold cross-validation scheme and achieved 82.1% (95% CI [0.64 0.92]) correct classifications. In conclusion, our results show that a radiomic analysis can be successfully performed on CEUS data and may help to render ultrasound-based tumour imaging more accurate, reproducible and reliable.
引用
收藏
页数:9
相关论文
共 40 条
[31]   Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices [J].
Soh, LK ;
Tsatsoulis, C .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (02) :780-795
[32]   A Model Using Texture Features to Differentiate the Nature of Thyroid Nodules on Sonography [J].
Song, Gesheng ;
Xue, Fuzhong ;
Zhang, Chengqi .
JOURNAL OF ULTRASOUND IN MEDICINE, 2015, 34 (10) :1753-1760
[33]   A priori Prediction of Neoadjuvant Chemotherapy Response and Survival in Breast Cancer Patients using Quantitative Ultrasound [J].
Tadayyon, Hadi ;
Sannachi, Lakshmanan ;
Gangeh, Mehrdad J. ;
Kim, Christina ;
Ghandi, Sonal ;
Trudeau, Maureen ;
Pritchard, Kathleen ;
Tran, William T. ;
Slodkowska, Elzbieta ;
Sadeghi-Naini, Ali ;
Czarnota, Gregory J. .
SCIENTIFIC REPORTS, 2017, 7
[34]   Exploratory Radiomics in Computed Tomography Perfusion of Prostate Cancer [J].
Tanadini-Lang, Stephanie ;
Bogowicz, Marta ;
Veit-Haibach, Patrick ;
Huellner, Martin ;
Pauli, Chantal ;
Shukla, Vyoma ;
Guckenberger, Matthias ;
Riesterer, Oliver .
ANTICANCER RESEARCH, 2018, 38 (02) :685-690
[35]   Texture information in run-length matrices [J].
Tang, XO .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (11) :1602-1609
[36]   SEMI-AUTOMATED SEGMENTATION OF THE TUMOR VASCULATURE IN CONTRAST-ENHANCED ULTRASOUND DATA [J].
Theek, Benjamin ;
Opacic, Tatjana ;
Lammers, Twan ;
Kiessling, Fabian .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2018, 44 (08) :1910-1917
[37]   Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging [J].
Theek, Benjamin ;
Gremse, Felix ;
Kunjachan, Sijumon ;
Fokong, Stanley ;
Pola, Robert ;
Pechar, Michal ;
Deckers, Roel ;
Storm, Gert ;
Ehling, Josef ;
Kiessling, Fabian ;
Lammers, Twan .
JOURNAL OF CONTROLLED RELEASE, 2014, 182 :83-89
[38]  
Wei K, 1998, CIRCULATION, V97, P473
[39]  
Wei T., 2017, R package "corrplot":Visualization of a correlation matrix
[40]   Evaluation of the Vascular Architecture of Focal Liver Lesions Using Micro Flow Imaging [J].
Yang, Hong ;
Liu, Guang-Jian ;
Lu, Ming-De ;
Xu, Hui-Xiong ;
Xie, Xiao-Yan .
JOURNAL OF ULTRASOUND IN MEDICINE, 2013, 32 (07) :1157-1171