Radiomic analysis of contrast-enhanced ultrasound data

被引:29
作者
Theek, Benjamin [1 ,2 ]
Opacic, Tatjana [1 ]
Magnuska, Zuzanna [1 ]
Lammers, Twan [1 ,2 ]
Kiessling, Fabian [1 ,2 ]
机构
[1] RWTH Aachen Univ Clin, Ctr Biohybrid Med Syst, Inst Expt Mol Imaging, Forckenbeckstr 55, D-52074 Aachen, Germany
[2] RWTH Aachen Univ Clin, Comprehens Diagnost Ctr Aache, Pauwelsstr 30, D-52074 Aachen, Germany
基金
欧洲研究理事会;
关键词
TEXTURE ANALYSIS; THYROID-NODULES; TUMOR RESPONSE; CANCER; FLOW; HETEROGENEITY; MICROBUBBLES; ARCHITECTURE; INFORMATION; FEATURES;
D O I
10.1038/s41598-018-29653-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Radiomics describes the use radiological data in a quantitative manner to establish correlations in between imaging biomarkers and clinical outcomes to improve disease diagnosis, treatment monitoring and prediction of therapy responses. In this study, we evaluated whether a radiomic analysis on contrast-enhanced ultrasound (CEUS) data allows to automatically differentiate three xenograft mouse tumour models. Next to conventional imaging biomarker classes, i.e. intensity-based, textural, and wavelet-based features, we included biomarkers describing morphological and functional characteristics of the tumour vasculature. In total, 235 imaging biomarkers were extracted and evaluated. Dedicated feature selection allowed us to identify user-independent and stable imaging biomarkers for each imaging biomarker class. The selected radiomic signature, composed of median image intensity, energy of grey-level co-occurrence matrix, vessel network length, and run length nonuniformity of the grey-level run length matrix from the diagonal details, was used to train a linear support vector machine (SVM) to classify tumour phenotypes. The model was trained by using a four-fold cross-validation scheme and achieved 82.1% (95% CI [0.64 0.92]) correct classifications. In conclusion, our results show that a radiomic analysis can be successfully performed on CEUS data and may help to render ultrasound-based tumour imaging more accurate, reproducible and reliable.
引用
收藏
页数:9
相关论文
共 40 条
[1]   Defining a Radiomic Response Phenotype: A Pilot Study using targeted therapy in NSCLC [J].
Aerts, Hugo J. W. L. ;
Grossmann, Patrick ;
Tan, Yongqiang ;
Oxnard, Geoffrey G. ;
Rizvi, Naiyer ;
Schwartz, Lawrence H. ;
Zhao, Binsheng .
SCIENTIFIC REPORTS, 2016, 6
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   Toward understanding and exploiting tumor heterogeneity [J].
Alizadeh, Ash A. ;
Aranda, Victoria ;
Bardelli, Alberto ;
Blanpain, Cedric ;
Bock, Christoph ;
Borowski, Christine ;
Caldas, Carlos ;
Califano, Andrea ;
Doherty, Michael ;
Elsner, Markus ;
Esteller, Manel ;
Fitzgerald, Rebecca ;
Korbel, Jan O. ;
Lichter, Peter ;
Mason, Christopher E. ;
Navin, Nicholas ;
Pe'er, Dana ;
Polyak, Kornelia ;
Roberts, Charles W. M. ;
Siu, Lillian ;
Snyder, Alexandra ;
Stower, Hannah ;
Swanton, Charles ;
Verhaak, Roel G. W. ;
Zenklusen, Jean C. ;
Zuber, Johannes ;
Zucman-Rossi, Jessica .
NATURE MEDICINE, 2015, 21 (08) :846-853
[4]   Classification of Benign and Malignant Thyroid Nodules Using Wavelet Texture Analysis of Sonograms [J].
Ardakani, Ali Abbasian ;
Gharbali, Akbar ;
Mohammadi, Afshin .
JOURNAL OF ULTRASOUND IN MEDICINE, 2015, 34 (11) :1983-1989
[5]   Test-Retest Reproducibility Analysis of Lung CT Image Features [J].
Balagurunathan, Yoganand ;
Kumar, Virendra ;
Gu, Yuhua ;
Kim, Jongphil ;
Wang, Hua ;
Liu, Ying ;
Goldgof, Dmitry B. ;
Hall, Lawrence O. ;
Korn, Rene ;
Zhao, Binsheng ;
Schwartz, Lawrence H. ;
Basu, Satrajit ;
Eschrich, Steven ;
Gatenby, Robert A. ;
Gillies, Robert J. .
JOURNAL OF DIGITAL IMAGING, 2014, 27 (06) :805-823
[6]   Prediction of Response to Neoadjuvant Chemotherapy and Radiation Therapy with Baseline and Restaging 18F-FDG PET Imaging Biomarkers in Patients with Esophageal Cancer [J].
Beukinga, Roelof J. ;
Hulshoff, Jan Binne ;
Mul, Veronique E. M. ;
Noordzij, Walter ;
Kats-Ugurlu, Gursah ;
Slart, Riemer H. J. A. ;
Plukker, John T. M. .
RADIOLOGY, 2018, 287 (03) :983-992
[7]  
BIO B. Amplion, 2016, CLIN DEV SUCCESS RAT
[8]   Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI [J].
Braman, Nathaniel M. ;
Etesami, Maryam ;
Prasanna, Prateek ;
Dubchuk, Christina ;
Gilmore, Hannah ;
Tiwari, Pallavi ;
Pletcha, Donna ;
Madabhushi, Anant .
BREAST CANCER RESEARCH, 2017, 19
[9]   Associations of Tumor PD-1 Ligands, Immunohistochemical Studies, and Textural Features in 18F-FDG PET in Squamous Cell Carcinoma of the Head and Neck [J].
Chen, Rui-Yun ;
Lin, Ying-Chun ;
Shen, Wei-Chih ;
Hsieh, Te-Chun ;
Yen, Kuo-Yang ;
Chen, Shang-Wen ;
Kao, Chia-Hung .
SCIENTIFIC REPORTS, 2018, 8
[10]   An analysis of co-occurrence texture statistics as a function of grey level quantization [J].
Clausi, DA .
CANADIAN JOURNAL OF REMOTE SENSING, 2002, 28 (01) :45-62