Fractional double phase Robin problem involving variable-order exponents and logarithm-type nonlinearity

被引:6
作者
Biswas, Reshmi [1 ]
Bahrouni, Anouar [2 ]
Fiscella, Alessio [3 ]
机构
[1] IIT Delhi, Dept Math, New Delhi, India
[2] Univ Monastir, Math Dept, Fac Sci, Monastir 5019, Tunisia
[3] Univ Milano Bicocca, Dept Math Applicat, Milan, Italy
基金
巴西圣保罗研究基金会;
关键词
critical nonlinearity; double phase problem; logarithmic nonlinearity; Robin boundary condition; variable-order fractional p(.)-Lplacian; CONCENTRATION-COMPACTNESS; SOBOLEV SPACES; MULTIPLICITY; REGULARITY; PRINCIPLES; EXISTENCE; EQUATIONS; PATTERNS;
D O I
10.1002/mma.8449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with the logarithmic fractional equations with variable exponents {(-Delta)(p1(.))(s1(.)) (u)+(-Delta)(p2(.))(s2(.) )(u)+vertical bar u vertical bar((p) over bar1(x)-2)u+vertical bar u vertical bar((p) over bar2(x)-2)u=lambda b(x)vertical bar u vertical bar(alpha(x)-2)u( ) +mu a(x)vertical bar u vertical bar(r(x)-2) u log vertical bar u vertical bar + mu c(x) vertical bar u vertical bar(eta(x)-2)u, x is an element of Omega, N-p1(.)(s1(.))(u) + N-p2(.)(s2(.))(u) + beta(x)(vertical bar u vertical bar(p) over bar1(x)-2 + vertical bar u vertical bar((p) over bar2(x)-2)u) = 0, x is an element of R-N\(Omega) over bar, where (-Delta)(pi(.))(si(.)) and N-pi(.)(si(.)) denote the variable s(i)(.) -order p(i)(.) -fractional Laplace operator and the nonlocal normal p(i)(.) -derivative of s(i)(.) -order, respectively, with s(i)(.) : R-2N -> (0,1) and p(i)(.) : R-2N -> (1,infinity) (i is an element of {1,2}) being continuous. Here, Omega subset of R-N is a bounded smooth domain with N > p(i)(x,y)s(i)(x,y) ( i is an element of {1,2} ) for any (x,y) is an element of (Omega) over barx (Omega) over bar,lambda and mu are a positive parameters, r(.) and eta(.) are two continuous functions, while variable exponent alpha(x) can be close to the critical exponent p(2s2*)(x) = N (p) over bar (2)(x)/(N - (s) over bar (2)(x)(p) over bar (2)(x)) , given with (p) over bar (2)(x) = p(2)(x,x) and ( s) over bar (2)(x)=s(2)(x,x) for x is an element of (Omega) over bar. Precisely, we consider two cases. In the first case, we deal with subcritical nonlinearity, that is, alpha(x) < p(2s)(2)*(x) , for any x is an element of (Omega) over bar . In the second case, we study the critical exponent, namely, alpha(x) = p(2s)(2)*(x) for some x is an element of (Omega) over bar. Then, using variational methods, we prove the existence and multiplicity of solutions and existence of ground state solutions to the above problem.
引用
收藏
页码:11272 / 11296
页数:25
相关论文
共 50 条
[1]   Fractional double-phase patterns: concentration and multiplicity of solutions [J].
Ambrosio, Vincenzo ;
Radulescu, Vicentiu D. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 142 :101-145
[2]  
Ambrosio V, 2018, MEDITERR J MATH, V15, DOI 10.1007/s00009-018-1259-9
[3]   Robin fractional problems with symmetric variable growth [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. ;
Winkert, Patrick .
JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (10)
[4]   Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEARITY, 2019, 32 (07) :2481-2495
[5]   ON A NEW FRACTIONAL SOBOLEV SPACE AND APPLICATIONS TO NONLOCAL VARIATIONAL PROBLEMS WITH VARIABLE EXPONENT [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03) :379-389
[6]   Comparison and sub-supersolution principles for the fractional p(x)-Laplacian [J].
Bahrouni, Anouar .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (02) :1363-1372
[7]   NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES [J].
Baroni, P. ;
Colombo, M. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) :347-379
[8]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[9]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[10]  
BISWAS R, 2020, Elect J Diff Equ, V98, P1