HgS and HgS/CdS Colloidal Quantum Dots with Infrared Intraband Transitions and Emergence of a Surface Plasmon

被引:79
作者
Shen, Guohua [1 ]
Guyot-Sionnest, Philippe [1 ]
机构
[1] Univ Chicago, James Franck Inst, 929 East 57th St, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
DOPED SEMICONDUCTOR NANOCRYSTALS; BETA-HGS; OPTICAL-ABSORPTION; II-VI; RESONANCES; FILMS; PHOTODETECTORS; LUMINESCENCE; CLUSTERS; ELECTRON;
D O I
10.1021/acs.jpcc.6b04014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
HgS colloidal quantum dots (CQDs) are synthesized at room temperature using a dual-phase method. The HgS CQDs ranging from 3 to 15 nm exhibit air-stable n-doping and infrared intraband absorptions. For HgS CQDs of small sizes, the doping density is close to 2 electrons per dot, while for larger ones, their intraband absorption peaks shift to as far as 10 mu m and exhibit Lorentzian line shapes. Under reducing potentials, these long-wavelength absorption peaks increase in strength and blue shift. This behavior can be explained through a classical model of the local field, showing how the degenerate single-electron transitions shift to a frequency that is the quadratic mean of the individual transition and a surface plasmon coming from a number of oscillators. This indicates that the intraband absorption of large, n-doped HgS CQDs is therefore becoming a surface plasmon. The same synthetic method works for HgS/CdS core/shells. Encapsulating HgS in a CdS shell removes the natural n-doping of the HgS cores, resulting in an interband photoluminescence at 1.5 mu m with similar to 5% quantum yield. The n-doping partially recovers upon film formation, and increases in strength after ligand exchange and annealing. The core/shell greatly improves the thermal stability of the HgS cores, allowing an annealing temperature as high as 200 degrees C.
引用
收藏
页码:11744 / 11753
页数:10
相关论文
共 39 条
[1]   From discrete electronic states to plasmons:: TDDFT optical absorption properties of Agn (n = 10, 20, 35, 56, 84, 120) tetrahedral clusters [J].
Aikens, Christine M. ;
Li, Shuzhou ;
Schatz, George C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (30) :11272-11279
[2]   Tunable Infrared Absorption and Visible Transparency of Colloidal Aluminum-Doped Zinc Oxide Nanocrystals [J].
Buonsanti, Raffaella ;
Llordes, Anna ;
Aloni, Shaul ;
Helms, Brett A. ;
Milliron, Delia J. .
NANO LETTERS, 2011, 11 (11) :4706-4710
[3]   Diffuse Surface Scattering and Quantum Size Effects in the Surface Plasmon Resonances of Low-Carrier-Density Nanocrystals [J].
Carmina Monreal, R. ;
Antosiewicz, Tomasz J. ;
Apell, S. Peter .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (09) :5074-5082
[4]   Spectroscopic studies on nanodispersions of CdS, HgS, their core-shells and composites prepared in micellar medium [J].
Chakraborty, I ;
Mitra, D ;
Moulik, SP .
JOURNAL OF NANOPARTICLE RESEARCH, 2005, 7 (2-3) :227-236
[5]  
Delhi A., 2002, PHYS REV B, V66
[6]   First-principles calculations of the II-VI semiconductor β-HgS:: Metal or semiconductor -: art. no. 153205 [J].
Delin, A .
PHYSICAL REVIEW B, 2002, 65 (15) :1-4
[7]   Intraband Luminescence from HgSe/CdS Core/Shell Quantum Dots [J].
Deng, Zhiyou ;
Guyot-Sionnest, Philippe .
ACS NANO, 2016, 10 (02) :2121-2127
[8]   Colloidal Quantum Dots Intraband Photodetectors [J].
Deng, Zhiyou ;
Jeong, Kwang Seob ;
Guyot-Sionnest, Philippe .
ACS NANO, 2014, 8 (11) :11707-11714
[9]   Plasmons in Photocharged ZnO Nanocrystals Revealing the Nature of Charge Dynamics [J].
Faucheaux, Jacob A. ;
Jain, Prashant K. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (18) :3024-3030
[10]   DIELECTRIC FUNCTION AND PLASMA RESONANCES OF SMALL METAL PARTICLES [J].
GENZEL, L ;
MARTIN, TP ;
KREIBIG, U .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1975, 21 (04) :339-346