On blowup for gain-term-only classical and relativistic Boltzmann equations

被引:17
作者
Andréasson, H
Calogero, S
Illner, R
机构
[1] Max Planck Inst Gravitationphys, Albert Einstein Inst, D-14476 Golm, Germany
[2] Chalmers Univ Technol, Dept Math, S-41296 Gothenburg, Sweden
[3] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
关键词
Boltzmann equation; relativistic Boltzmann equation; blowup;
D O I
10.1002/mma.555
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that deletion of the loss part of the collision term in all physically relevant versions of the Boltzmann equation, including the relativistic case, will in general lead to blowup in finite time of a solution and hence prevent global existence. Our result corrects an error in the proof given (Math. Meth. Appl. Sci. 1987; 9:251-259), where the result was announced for the classical hard sphere case; here we give a simpler proof which applies much more generally. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:2231 / 2240
页数:10
相关论文
共 16 条
[1]  
[Anonymous], 1967, COMMUN MATH PHYS
[2]   ON THE CAUCHY-PROBLEM FOR THE NONLINEAR BOLTZMANN-EQUATION GLOBAL EXISTENCE UNIQUENESS AND ASYMPTOTIC STABILITY [J].
BELLOMO, N ;
TOSCANI, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (02) :334-338
[3]   On the singularities of the global small solutions of the full Boltzmann equation [J].
Boudin, L ;
Desvillettes, L .
MONATSHEFTE FUR MATHEMATIK, 2000, 131 (02) :91-108
[4]  
Cercignani C., 2002, RELATIVISTIC BOLTZMA
[5]  
Cercignani C, 1988, BOLTZMANN EQUATION I
[6]  
Cercignani C, 1994, MATH THEORY DILUTE G
[7]  
Glassey R. T., 1995, Transport Theory and Statistical Physics, V24, P657, DOI 10.1080/00411459508206020
[8]   ASYMPTOTIC STABILITY OF THE RELATIVISTIC MAXWELLIAN [J].
GLASSEY, RT ;
STRAUSS, WA .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1993, 29 (02) :301-347
[9]  
GLASSEY RT, 1994, CAUCHY PROBLEM KINET
[10]  
HAMDACHE K, 1984, CR ACAD SCI I-MATH, V299, P431